minor typos from recent edits
authorScott Morrison <scott@tqft.net>
Thu, 13 Oct 2011 14:15:58 -0400
changeset 908 33404cea7dd3
parent 907 fcd380e21e7c
child 910 6e063400ad27
minor typos from recent edits
text/a_inf_blob.tex
text/deligne.tex
--- a/text/a_inf_blob.tex	Thu Oct 13 10:54:06 2011 -0700
+++ b/text/a_inf_blob.tex	Thu Oct 13 14:15:58 2011 -0400
@@ -271,7 +271,7 @@
 or the fields $\cE(p^*(E))$, when $\dim(D) < k$.
 (Here $p^*(E)$ denotes the pull-back bundle over $D$.)
 Let $\cF_E$ denote this $k$-category over $Y$.
-We can adapt the homotopy colimit construction (based decompositions of $Y$ into balls) to
+We can adapt the homotopy colimit construction (based on decompositions of $Y$ into balls) to
 get a chain complex $\cl{\cF_E}(Y)$.
 
 \begin{thm}
@@ -291,7 +291,7 @@
 \[
 	\psi: \cl{\cF_E}(Y) \to \bc_*(E) .
 \]
-0-simplices of the homotopy colimit $\cl{\cF_E}(Y)$ are glued up to give an element of $\bc_*(E)$.
+The 0-simplices of the homotopy colimit $\cl{\cF_E}(Y)$ are glued up to give an element of $\bc_*(E)$.
 Simplices of positive degree are sent to zero.
 
 Let $G_* \sub \bc_*(E)$ be the image of $\psi$.
--- a/text/deligne.tex	Thu Oct 13 10:54:06 2011 -0700
+++ b/text/deligne.tex	Thu Oct 13 14:15:58 2011 -0400
@@ -211,7 +211,7 @@
 \end{thm}
 
 The ``up to coherent homotopy" in the statement is due to the fact that the isomorphisms of 
-\ref{lem:bc-btc} and \ref{thm:gluing} are only defined to up to a contractible set of homotopies.
+\ref{lem:bc-btc} and \ref{thm:gluing} are only defined up to a contractible set of homotopies.
 
 If, in analogy to Hochschild cochains, we define elements of $\hom(M, N)$
 to be ``blob cochains", we can summarize the above proposition by saying that the $n$-SC operad acts on