added pinched product figs
authorKevin Walker <kevin@canyon23.net>
Sun, 06 Jun 2010 20:56:47 +0200
changeset 352 38da35694123
parent 351 dd4757560f22
child 353 3e3ff47c5350
added pinched product figs
diagrams/pdf/tempkw/pinched_prod_unions.pdf
diagrams/pdf/tempkw/pinched_prods.pdf
text/deligne.tex
text/ncat.tex
Binary file diagrams/pdf/tempkw/pinched_prod_unions.pdf has changed
Binary file diagrams/pdf/tempkw/pinched_prods.pdf has changed
--- a/text/deligne.tex	Sun Jun 06 09:49:57 2010 -0700
+++ b/text/deligne.tex	Sun Jun 06 20:56:47 2010 +0200
@@ -225,8 +225,9 @@
 a higher dimensional version of the Deligne conjecture for Hochschild cochains and the little 2-disk operad.
 
 \begin{proof}
-
-
+As described above, $FG^n_{\overline{M}, \overline{N}}$ is equal to the disjoint
+union of products of homeomorphisms spaces, modulo some relations.
+By \ref{CHprop}, 
 \nn{...}
 \end{proof}
 
--- a/text/ncat.tex	Sun Jun 06 09:49:57 2010 -0700
+++ b/text/ncat.tex	Sun Jun 06 20:56:47 2010 +0200
@@ -334,7 +334,11 @@
 
 We will need to strengthen the above preliminary version of the axiom to allow
 for products which are ``pinched" in various ways along their boundary.
-(See Figure xxxx.)
+(See Figure \ref{pinched_prods}.)
+\begin{figure}[t]
+$$\mathfig{.8}{tempkw/pinched_prods}$$
+\caption{Examples of pinched products}\label{pinched_prods}
+\end{figure}
 (The need for a strengthened version will become apparent in appendix \ref{sec:comparing-defs}
 where we construct a traditional category from a topological category.)
 Define a {\it pinched product} to be a map
@@ -359,7 +363,11 @@
 $\pi:E'\to \pi(E')$ is again a pinched product.
 A {union} of pinched products is a decomposition $E = \cup_i E_i$
 such that each $E_i\sub E$ is a sub pinched product.
-(See Figure xxxx.)
+(See Figure \ref{pinched_prod_unions}.)
+\begin{figure}[t]
+$$\mathfig{.8}{tempkw/pinched_prod_unions}$$
+\caption{Unions of pinched products}\label{pinched_prod_unions}
+\end{figure}
 
 The product axiom will give a map $\pi^*:\cC(X)\to \cC(E)$ for each pinched product
 $\pi:E\to X$.