text/comm_alg.tex
author Scott Morrison <scott@tqft.net>
Tue, 30 Mar 2010 15:12:27 -0700
changeset 236 3feb6e24a518
parent 166 75f5c197a0d4
child 266 e2bab777d7c9
permissions -rw-r--r--
changing diff to homeo
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\section{Commutative algebras as $n$-categories}
147
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
     4
\label{sec:comm_alg}
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     6
\nn{this should probably not be a section by itself.  i'm just trying to write down the outline 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
while it's still fresh in my mind.}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
     9
\nn{I strongly suspect that [blob complex
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    10
for $M^n$ based on comm alg $C$ thought of as an $n$-category]
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    11
is homotopy equivalent to [higher Hochschild complex for $M^n$ with coefficients in $C$].
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    12
(Thomas Tradler's idea.)
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    13
Should prove (or at least conjecture) that here.}
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    14
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    15
\nn{also, this section needs a little updating to be compatible with the rest of the paper.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    16
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    17
If $C$ is a commutative algebra it
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    18
can also be thought of as an $n$-category whose $j$-morphisms are trivial for
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    19
$j<n$ and whose $n$-morphisms are $C$. 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    20
The goal of this \nn{subsection?} is to compute
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    21
$\bc_*(M^n, C)$ for various commutative algebras $C$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    22
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    23
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    24
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    25
Let $k[t]$ denote the ring of polynomials in $t$ with coefficients in $k$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    26
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    27
Let $\Sigma^i(M)$ denote the $i$-th symmetric power of $M$, the configuration space of $i$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    28
unlabeled points in $M$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    29
Note that $\Sigma^0(M)$ is a point.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    30
Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    31
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    32
Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    33
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    34
\begin{prop} \label{sympowerprop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    35
$\bc_*(M, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    36
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    37
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
\begin{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    39
To define the chain maps between the two complexes we will use the following lemma:
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    40
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    41
\begin{lemma}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    42
Let $A_*$ and $B_*$ be chain complexes, and assume $A_*$ is equipped with
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    43
a basis (e.g.\ blob diagrams or singular simplices).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    44
For each basis element $c \in A_*$ assume given a contractible subcomplex $R(c)_* \sub B_*$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    45
such that $R(c')_* \sub R(c)_*$ whenever $c'$ is a basis element which is part of $\bd c$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    46
Then the complex of chain maps (and (iterated) homotopies) $f:A_*\to B_*$ such that
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    47
$f(c) \in R(c)_*$ for all $c$ is contractible (and in particular non-empty).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    48
\end{lemma}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    49
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    50
\begin{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    51
\nn{easy, but should probably write the details eventually}
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    52
\nn{this is just the standard ``method of acyclic models" set up, so we should just give a reference for that}
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    53
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    54
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    55
Our first task: For each blob diagram $b$ define a subcomplex $R(b)_* \sub C_*(\Sigma^\infty(M))$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    56
satisfying the conditions of the above lemma.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    57
If $b$ is a 0-blob diagram, then it is just a $k[t]$ field on $M$, which is a 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    58
finite unordered collection of points of $M$ with multiplicities, which is
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    59
a point in $\Sigma^\infty(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    60
Define $R(b)_*$ to be the singular chain complex of this point.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    61
If $(B, u, r)$ is an $i$-blob diagram, let $D\sub M$ be its support (the union of the blobs).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    62
The path components of $\Sigma^\infty(D)$ are contractible, and these components are indexed 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    63
by the numbers of points in each component of $D$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    64
We may assume that the blob labels $u$ have homogeneous $t$ degree in $k[t]$, and so
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    65
$u$ picks out a component $X \sub \Sigma^\infty(D)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    66
The field $r$ on $M\setminus D$ can be thought of as a point in $\Sigma^\infty(M\setminus D)$,
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    67
and using this point we can embed $X$ in $\Sigma^\infty(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
Define $R(B, u, r)_*$ to be the singular chain complex of $X$, thought of as a 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    69
subspace of $\Sigma^\infty(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    70
It is easy to see that $R(\cdot)_*$ satisfies the condition on boundaries from the above lemma.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    71
Thus we have defined (up to homotopy) a map from 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
$\bc_*(M^n, k[t])$ to $C_*(\Sigma^\infty(M))$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    73
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    74
Next we define, for each simplex $c$ of $C_*(\Sigma^\infty(M))$, a contractible subspace
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    75
$R(c)_* \sub \bc_*(M^n, k[t])$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    76
If $c$ is a 0-simplex we use the identification of the fields $\cC(M)$ and 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    77
$\Sigma^\infty(M)$ described above.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    78
Now let $c$ be an $i$-simplex of $\Sigma^j(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    79
Choose a metric on $M$, which induces a metric on $\Sigma^j(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    80
We may assume that the diameter of $c$ is small --- that is, $C_*(\Sigma^j(M))$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    81
is homotopy equivalent to the subcomplex of small simplices.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    82
How small?  $(2r)/3j$, where $r$ is the radius of injectivity of the metric.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    83
Let $T\sub M$ be the ``track" of $c$ in $M$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    84
\nn{do we need to define this precisely?}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    85
Choose a neighborhood $D$ of $T$ which is a disjoint union of balls of small diameter.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    86
\nn{need to say more precisely how small}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    87
Define $R(c)_*$ to be $\bc_*(D, k[t]) \sub \bc_*(M^n, k[t])$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    88
This is contractible by \ref{bcontract}.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    89
We can arrange that the boundary/inclusion condition is satisfied if we start with
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    90
low-dimensional simplices and work our way up.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    91
\nn{need to be more precise}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    92
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    93
\nn{still to do: show indep of choice of metric; show compositions are homotopic to the identity
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    94
(for this, might need a lemma that says we can assume that blob diameters are small)}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    95
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    96
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    97
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 166
diff changeset
    98
\begin{prop} \label{ktchprop}
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    99
The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   100
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   101
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   102
\begin{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   103
The actions agree in degree 0, and both are compatible with gluing.
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 166
diff changeset
   104
(cf. uniqueness statement in \ref{CHprop}.)
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   105
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   106
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   107
\medskip
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   108
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   109
In view of \ref{hochthm}, we have proved that $HH_*(k[t]) \cong C_*(\Sigma^\infty(S^1), k)$,
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   110
and that the cyclic homology of $k[t]$ is related to the action of rotations
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   111
on $C_*(\Sigma^\infty(S^1), k)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   112
\nn{probably should put a more precise statement about cyclic homology and $S^1$ actions in the Hochschild section}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   113
Let us check this directly.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   114
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   115
According to \cite[3.2.2]{MR1600246}, $HH_i(k[t]) \cong k[t]$ for $i=0,1$ and is zero for $i\ge 2$.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   116
\nn{say something about $t$-degree?  is this in Loday?}
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   117
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   118
We can define a flow on $\Sigma^j(S^1)$ by having the points repel each other.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   119
The fixed points of this flow are the equally spaced configurations.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   120
This defines a map from $\Sigma^j(S^1)$ to $S^1/j$ ($S^1$ modulo a $2\pi/j$ rotation).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   121
The fiber of this map is $\Delta^{j-1}$, the $(j-1)$-simplex, 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
and the holonomy of the $\Delta^{j-1}$ bundle
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   123
over $S^1/j$ is induced by the cyclic permutation of its $j$ vertices.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   124
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   125
In particular, $\Sigma^j(S^1)$ is homotopy equivalent to a circle for $j>0$, and
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
of course $\Sigma^0(S^1)$ is a point.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   127
Thus the singular homology $H_i(\Sigma^\infty(S^1))$ has infinitely many generators for $i=0,1$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   128
and is zero for $i\ge 2$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   129
\nn{say something about $t$-degrees also matching up?}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   130
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 166
diff changeset
   131
By xxxx and \ref{ktchprop}, 
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   132
the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   133
Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   134
If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   135
0, $\z/j \z$ in odd degrees, and 0 in positive even degrees.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   136
The point $\Sigma^0(S^1)$ contributes the homology of $BS^1$ which is $\z$ in even 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   137
degrees and 0 in odd degrees.
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   138
This agrees with the calculation in \cite[3.1.7]{MR1600246}.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   139
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   140
\medskip
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   141
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   142
Next we consider the case $C = k[t_1, \ldots, t_m]$, commutative polynomials in $m$ variables.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   143
Let $\Sigma_m^\infty(M)$ be the $m$-colored infinite symmetric power of $M$, that is, configurations
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   144
of points on $M$ which can have any of $m$ distinct colors but are otherwise indistinguishable.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   145
The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   146
corresponding to the number of points of each color of a configuration.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   147
A proof similar to that of \ref{sympowerprop} shows that
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   148
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   149
\begin{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   150
$\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   151
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   152
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   153
According to \cite[3.2.2]{MR1600246},
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   154
\[
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   155
	HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] .
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   156
\]
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   157
Let us check that this is also the singular homology of $\Sigma_m^\infty(S^1)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   158
We will content ourselves with the case $k = \z$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   159
One can define a flow on $\Sigma_m^\infty(S^1)$ where points of the same color repel each other and points of different colors do not interact.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
This shows that a component $X$ of $\Sigma_m^\infty(S^1)$ is homotopy equivalent
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   161
to the torus $(S^1)^l$, where $l$ is the number of non-zero entries in the $m$-tuple
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   162
corresponding to $X$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   163
The homology calculation we desire follows easily from this.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   164
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   165
\nn{say something about cyclic homology in this case?  probably not necessary.}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   166
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   167
\medskip
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   168
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   169
Next we consider the case $C$ is the truncated polynomial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   170
algebra $k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   171
Define $\Delta_l \sub \Sigma^\infty(M)$ to be configurations of points in $M$ with $l$ or
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   172
more of the points coinciding.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   173
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   174
\begin{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   175
$\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   176
(relative singular chains with coefficients in $k$).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   177
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   178
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   179
\begin{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   180
\nn{...}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   181
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   182
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   183
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   184
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   185
\medskip
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   186
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   187
Still to do:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   188
\begin{itemize}
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   189
\item compare the topological computation for truncated polynomial algebra with \cite{MR1600246}
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   190
\item multivariable truncated polynomial algebras (at least mention them)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   191
\item ideally, say something more about higher hochschild homology (maybe sketch idea for proof of equivalence)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   192
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   193