text/comm_alg.tex
changeset 236 3feb6e24a518
parent 166 75f5c197a0d4
child 266 e2bab777d7c9
--- a/text/comm_alg.tex	Tue Mar 30 10:03:48 2010 -0700
+++ b/text/comm_alg.tex	Tue Mar 30 15:12:27 2010 -0700
@@ -95,13 +95,13 @@
 \end{proof}
 
 
-\begin{prop} \label{ktcdprop}
+\begin{prop} \label{ktchprop}
 The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$.
 \end{prop}
 
 \begin{proof}
 The actions agree in degree 0, and both are compatible with gluing.
-(cf. uniqueness statement in \ref{CDprop}.)
+(cf. uniqueness statement in \ref{CHprop}.)
 \end{proof}
 
 \medskip
@@ -128,7 +128,7 @@
 and is zero for $i\ge 2$.
 \nn{say something about $t$-degrees also matching up?}
 
-By xxxx and \ref{ktcdprop}, 
+By xxxx and \ref{ktchprop}, 
 the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$.
 Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$.
 If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree