text/hochschild.tex
author kevin@6e1638ff-ae45-0410-89bd-df963105f760
Mon, 04 Aug 2008 20:34:48 +0000
changeset 43 700ac2678d00
parent 39 5cf5940d1a2c
child 46 0ffcbbd8019c
permissions -rw-r--r--
Q.I => hty equiv for free complexes
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     1
In this section we analyze the blob complex in dimension $n=1$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     2
and find that for $S^1$ the homology of the blob complex is the
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     3
Hochschild homology of the category (algebroid) that we started with.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     4
\nn{or maybe say here that the complexes are quasi-isomorphic?  in general,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     5
should perhaps put more emphasis on the complexes and less on the homology.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     6
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     7
Notation: $HB_i(X) = H_i(\bc_*(X))$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     8
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     9
Let us first note that there is no loss of generality in assuming that our system of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    10
fields comes from a category.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    11
(Or maybe (???) there {\it is} a loss of generality.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    12
Given any system of fields, $A(I; a, b) = \cC(I; a, b)/U(I; a, b)$ can be
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    13
thought of as the morphisms of a 1-category $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    14
More specifically, the objects of $C$ are $\cC(pt)$, the morphisms from $a$ to $b$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    15
are $A(I; a, b)$, and composition is given by gluing.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    16
If we instead take our fields to be $C$-pictures, the $\cC(pt)$ does not change
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    17
and neither does $A(I; a, b) = HB_0(I; a, b)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    18
But what about $HB_i(I; a, b)$ for $i > 0$?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    19
Might these higher blob homology groups be different?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    20
Seems unlikely, but I don't feel like trying to prove it at the moment.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    21
In any case, we'll concentrate on the case of fields based on 1-category
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    22
pictures for the rest of this section.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    23
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    24
(Another question: $\bc_*(I)$ is an $A_\infty$-category.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    25
How general of an $A_\infty$-category is it?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    26
Given an arbitrary $A_\infty$-category can one find fields and local relations so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    27
that $\bc_*(I)$ is in some sense equivalent to the original $A_\infty$-category?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    28
Probably not, unless we generalize to the case where $n$-morphisms are complexes.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    29
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    30
Continuing...
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    31
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    32
Let $C$ be a *-1-category.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    33
Then specializing the definitions from above to the case $n=1$ we have:
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    34
\begin{itemize}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    35
\item $\cC(pt) = \ob(C)$ .
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    36
\item Let $R$ be a 1-manifold and $c \in \cC(\bd R)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    37
Then an element of $\cC(R; c)$ is a collection of (transversely oriented)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    38
points in the interior
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    39
of $R$, each labeled by a morphism of $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    40
The intervals between the points are labeled by objects of $C$, consistent with
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    41
the boundary condition $c$ and the domains and ranges of the point labels.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    42
\item There is an evaluation map $e: \cC(I; a, b) \to \mor(a, b)$ given by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    43
composing the morphism labels of the points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    44
Note that we also need the * of *-1-category here in order to make all the morphisms point
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    45
the same way.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    46
\item For $x \in \mor(a, b)$ let $\chi(x) \in \cC(I; a, b)$ be the field with a single
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    47
point (at some standard location) labeled by $x$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    48
Then the kernel of the evaluation map $U(I; a, b)$ is generated by things of the
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    49
form $y - \chi(e(y))$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    50
Thus we can, if we choose, restrict the blob twig labels to things of this form.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    51
\end{itemize}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    52
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    53
We want to show that $HB_*(S^1)$ is naturally isomorphic to the
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    54
Hochschild homology of $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    55
\nn{Or better that the complexes are homotopic
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    56
or quasi-isomorphic.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    57
In order to prove this we will need to extend the blob complex to allow points to also
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    58
be labeled by elements of $C$-$C$-bimodules.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    59
%Given an interval (1-ball) so labeled, there is an evaluation map to some tensor product
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    60
%(over $C$) of $C$-$C$-bimodules.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    61
%Define the local relations $U(I; a, b)$ to be the direct sum of the kernels of these maps.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    62
%Now we can define the blob complex for $S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    63
%This complex is the sum of complexes with a fixed cyclic tuple of bimodules present.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    64
%If $M$ is a $C$-$C$-bimodule, let $G_*(M)$ denote the summand of $\bc_*(S^1)$ corresponding
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    65
%to the cyclic 1-tuple $(M)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    66
%In other words, $G_*(M)$ is a blob-like complex where exactly one point is labeled
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    67
%by an element of $M$ and the remaining points are labeled by morphisms of $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    68
%It's clear that $G_*(C)$ is isomorphic to the original bimodule-less
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    69
%blob complex for $S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    70
%\nn{Is it really so clear?  Should say more.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    71
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    72
%\nn{alternative to the above paragraph:}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    73
Fix points $p_1, \ldots, p_k \in S^1$ and $C$-$C$-bimodules $M_1, \ldots M_k$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    74
We define a blob-like complex $K_*(S^1, (p_i), (M_i))$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    75
The fields have elements of $M_i$ labeling $p_i$ and elements of $C$ labeling
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    76
other points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    77
The blob twig labels lie in kernels of evaluation maps.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    78
(The range of these evaluation maps is a tensor product (over $C$) of $M_i$'s.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    79
Let $K_*(M) = K_*(S^1, (*), (M))$, where $* \in S^1$ is some standard base point.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    80
In other words, fields for $K_*(M)$ have an element of $M$ at the fixed point $*$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    81
and elements of $C$ at variable other points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    82
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    83
\todo{Some orphaned questions:}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    84
\nn{Or maybe we should claim that $M \to K_*(M)$ is the/a derived coend.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    85
Or maybe that $K_*(M)$ is quasi-isomorphic (or perhaps homotopic) to the Hochschild
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    86
complex of $M$.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    87
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    88
\nn{What else needs to be said to establish quasi-isomorphism to Hochschild complex?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    89
Do we need a map from hoch to blob?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    90
Does the above exactness and contractibility guarantee such a map without writing it
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    91
down explicitly?
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    92
Probably it's worth writing down an explicit map even if we don't need to.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    93
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    94
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    95
We claim that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    96
\begin{thm}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    97
The blob complex $\bc_*(S^1; C)$ on the circle is quasi-isomorphic to the
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    98
usual Hochschild complex for $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    99
\end{thm}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   100
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   101
\nn{Note that since both complexes are free (in particular, projective),
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   102
quasi-isomorphic implies homotopy equivalent.  
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   103
This applies to the two claims below also.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   104
Thanks to Peter Teichner for pointing this out to me.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   105
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   106
This follows from two results. First, we see that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   107
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   108
\label{lem:module-blob}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   109
The complex $K_*(C)$ (here $C$ is being thought of as a
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   110
$C$-$C$-bimodule, not a category) is quasi-isomorphic to the blob complex
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   111
$\bc_*(S^1; C)$. (Proof later.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   112
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   113
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   114
Next, we show that for any $C$-$C$-bimodule $M$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   115
\begin{prop}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   116
The complex $K_*(M)$ is quasi-isomorphic to $HC_*(M)$, the usual
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   117
Hochschild complex of $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   118
\end{prop}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   119
\begin{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   120
Recall that the usual Hochschild complex of $M$ is uniquely determined,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   121
up to quasi-isomorphism, by the following properties:
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   122
\begin{enumerate}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   123
\item \label{item:hochschild-additive}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   124
$HC_*(M_1 \oplus M_2) \cong HC_*(M_1) \oplus HC_*(M_2)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   125
\item \label{item:hochschild-exact}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   126
An exact sequence $0 \to M_1 \into M_2 \onto M_3 \to 0$ gives rise to an
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   127
exact sequence $0 \to HC_*(M_1) \into HC_*(M_2) \onto HC_*(M_3) \to 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   128
\item \label{item:hochschild-coinvariants}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   129
$HH_0(M)$ is isomorphic to the coinvariants of $M$, $\coinv(M) =
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   130
M/\langle cm-mc \rangle$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   131
\item \label{item:hochschild-free}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   132
$HC_*(C\otimes C)$ (the free $C$-$C$-bimodule with one generator) is contractible; that is,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   133
quasi-isomorphic to its $0$-th homology (which in turn, by \ref{item:hochschild-coinvariants}, is just $C$) via the quotient map $HC_0 \onto HH_0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   134
\end{enumerate}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   135
(Together, these just say that Hochschild homology is `the derived functor of coinvariants'.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   136
We'll first recall why these properties are characteristic.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   137
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   138
Take some $C$-$C$ bimodule $M$, and choose a free resolution
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   139
\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   140
\cdots \to F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   141
\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   142
We will show that for any functor $\cP$ satisfying properties
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   143
\ref{item:hochschild-additive}, \ref{item:hochschild-exact},
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   144
\ref{item:hochschild-coinvariants} and \ref{item:hochschild-free}, there
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   145
is a quasi-isomorphism
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   146
$$\cP_*(M) \iso \coinv(F_*).$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   147
%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   148
Observe that there's a quotient map $\pi: F_0 \onto M$, and by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   149
construction the cone of the chain map $\pi: F_* \to M$ is acyclic. Now
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   150
construct the total complex $\cP_i(F_j)$, with $i,j \geq 0$, graded by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   151
$i+j$. We have two chain maps
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   152
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   153
\cP_i(F_*) & \xrightarrow{\cP_i(\pi)} \cP_i(M) \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   154
\intertext{and}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   155
\cP_*(F_j) & \xrightarrow{\cP_0(F_j) \onto H_0(\cP_*(F_j))} \coinv(F_j).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   156
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   157
The cone of each chain map is acyclic. In the first case, this is because the `rows' indexed by $i$ are acyclic since $HC_i$ is exact.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   158
In the second case, this is because the `columns' indexed by $j$ are acyclic, since $F_j$ is free.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   159
Because the cones are acyclic, the chain maps are quasi-isomorphisms. Composing one with the inverse of the other, we obtain the desired quasi-isomorphism
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   160
$$\cP_*(M) \quismto \coinv(F_*).$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   161
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   162
%If $M$ is free, that is, a direct sum of copies of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   163
%$C \tensor C$, then properties \ref{item:hochschild-additive} and
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   164
%\ref{item:hochschild-free} determine $HC_*(M)$. Otherwise, choose some
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   165
%free cover $F \onto M$, and define $K$ to be this map's kernel. Thus we
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   166
%have a short exact sequence $0 \to K \into F \onto M \to 0$, and hence a
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   167
%short exact sequence of complexes $0 \to HC_*(K) \into HC_*(F) \onto HC_*(M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   168
%\to 0$. Such a sequence gives a long exact sequence on homology
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   169
%\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   170
%%\begin{split}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   171
%\cdots \to HH_{i+1}(F) \to HH_{i+1}(M) \to HH_i(K) \to HH_i(F) \to \cdots % \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   172
%%\cdots \to HH_1(F) \to HH_1(M) \to HH_0(K) \to HH_0(F) \to HH_0(M).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   173
%%\end{split}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   174
%\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   175
%For any $i \geq 1$, $HH_{i+1}(F) = HH_i(F) = 0$, by properties
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   176
%\ref{item:hochschild-additive} and \ref{item:hochschild-free}, and so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   177
%$HH_{i+1}(M) \iso HH_i(F)$. For $i=0$, \todo{}.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   178
%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   179
%This tells us how to
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   180
%compute every homology group of $HC_*(M)$; we already know $HH_0(M)$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   181
%(it's just coinvariants, by property \ref{item:hochschild-coinvariants}),
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   182
%and higher homology groups are determined by lower ones in $HC_*(K)$, and
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   183
%hence recursively as coinvariants of some other bimodule.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   184
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   185
The proposition then follows from the following lemmas, establishing that $K_*$ has precisely these required properties.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   186
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   187
\label{lem:hochschild-additive}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   188
Directly from the definition, $K_*(M_1 \oplus M_2) \cong K_*(M_1) \oplus K_*(M_2)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   189
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   190
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   191
\label{lem:hochschild-exact}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   192
An exact sequence $0 \to M_1 \into M_2 \onto M_3 \to 0$ gives rise to an
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   193
exact sequence $0 \to K_*(M_1) \into K_*(M_2) \onto K_*(M_3) \to 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   194
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   195
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   196
\label{lem:hochschild-coinvariants}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   197
$H_0(K_*(M))$ is isomorphic to the coinvariants of $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   198
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   199
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   200
\label{lem:hochschild-free}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   201
$K_*(C\otimes C)$ is quasi-isomorphic to $H_0(K_*(C \otimes C)) \iso C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   202
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   203
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   204
The remainder of this section is devoted to proving Lemmas
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   205
\ref{lem:module-blob},
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   206
\ref{lem:hochschild-exact}, \ref{lem:hochschild-coinvariants} and
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   207
\ref{lem:hochschild-free}.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   208
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   209
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   210
\begin{proof}[Proof of Lemma \ref{lem:module-blob}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   211
We show that $K_*(C)$ is quasi-isomorphic to $\bc_*(S^1)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   212
$K_*(C)$ differs from $\bc_*(S^1)$ only in that the base point *
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   213
is always a labeled point in $K_*(C)$, while in $\bc_*(S^1)$ it may or may not be.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   214
In other words, there is an inclusion map $i: K_*(C) \to \bc_*(S^1)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   215
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   216
We define a left inverse $s: \bc_*(S^1) \to K_*(C)$ to the inclusion as follows.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   217
If $y$ is a field defined on a neighborhood of *, define $s(y) = y$ if
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   218
* is a labeled point in $y$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   219
Otherwise, define $s(y)$ to be the result of adding a label 1 (identity morphism) at *.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   220
Let $x \in \bc_*(S^1)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   221
Let $s(x)$ be the result of replacing each field $y$ (containing *) mentioned in
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   222
$x$ with $s(y)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   223
It is easy to check that $s$ is a chain map and $s \circ i = \id$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   224
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   225
Let $L_*^\ep \sub \bc_*(S^1)$ be the subcomplex where there are no labeled points
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   226
in a neighborhood $B_\ep$ of $*$, except perhaps $*$, and $B_\ep$ is either disjoint from or contained in every blob.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   227
Note that for any chain $x \in \bc_*(S^1)$, $x \in L_*^\ep$ for sufficiently small $\ep$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   228
\nn{rest of argument goes similarly to above}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   229
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   230
We define a degree $1$ chain map $j_\ep: L_*^\ep \to L_*^\ep$ as follows. Let $x \in L_*^\ep$ be a blob diagram.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   231
If $*$ is not contained in any twig blob, we define $j_\ep(x)$ by adding $B_\ep$ as a new twig blob, with label $y - s(y)$ where $y$ is the restriction
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   232
of $x$ to $B_\ep$. If $*$ is contained in a twig blob $B$ with label $u=\sum z_i$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   233
write $y_i$ for the restriction of $z_i$ to $B_\ep$, and let
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   234
$x_i$ be equal to $x$ on $S^1 \setmin B$, equal to $z_i$ on $B \setmin B_\ep$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   235
and have an additional blob $B_\ep$ with label $y_i - s(y_i)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   236
Define $j_\ep(x) = \sum x_i$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   237
\todo{need to check signs coming from blob complex differential}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   238
\todo{finish this}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   239
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   240
\begin{proof}[Proof of Lemma \ref{lem:hochschild-exact}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   241
We now prove that $K_*$ is an exact functor.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   242
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   243
%\todo{p. 1478 of scott's notes}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   244
Essentially, this comes down to the unsurprising fact that the functor on $C$-$C$ bimodules
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   245
\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   246
M \mapsto \ker(C \tensor M \tensor C \xrightarrow{c_1 \tensor m \tensor c_2 \mapsto c_1 m c_2} M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   247
\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   248
is exact. For completeness we'll explain this below.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   249
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   250
Suppose we have a short exact sequence of $C$-$C$ bimodules $$\xymatrix{0 \ar[r] & K \ar@{^{(}->}[r]^f & E \ar@{->>}[r]^g & Q \ar[r] & 0}.$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   251
We'll write $\hat{f}$ and $\hat{g}$ for the image of $f$ and $g$ under the functor.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   252
Most of what we need to check is easy.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   253
If $(a \tensor k \tensor b) \in \ker(C \tensor K \tensor C \to K)$, to have $\hat{f}(a \tensor k \tensor b) = 0 \in \ker(C \tensor E \tensor C \to E)$, we must have $f(k) = 0 \in E$, so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   254
be $k=0$ itself. If $(a \tensor e \tensor b) \in \ker(C \tensor E \tensor C \to E)$ is in the image of $\ker(C \tensor K \tensor C \to K)$ under $\hat{f}$, clearly
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   255
$e$ is in the image of the original $f$, so is in the kernel of the original $g$, and so $\hat{g}(a \tensor e \tensor b) = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   256
If $\hat{g}(a \tensor e \tensor b) = 0$, then $g(e) = 0$, so $e = f(\widetilde{e})$ for some $\widetilde{e} \in K$, and $a \tensor e \tensor b = \hat{f}(a \tensor \widetilde{e} \tensor b)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   257
Finally, the interesting step is in checking that any $q = \sum_i a_i \tensor q_i \tensor b_i$ such that $\sum_i a_i q_i b_i = 0$ is in the image of $\ker(C \tensor E \tensor C \to C)$ under $\hat{g}$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   258
For each $i$, we can find $\widetilde{q_i}$ so $g(\widetilde{q_i}) = q_i$. However $\sum_i a_i \widetilde{q_i} b_i$ need not be zero.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   259
Consider then $$\widetilde{q} = \sum_i (a_i \tensor \widetilde{q_i} \tensor b_i) - 1 \tensor (\sum_i a_i \widetilde{q_i} b_i) \tensor 1.$$ Certainly
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   260
$\widetilde{q} \in \ker(C \tensor E \tensor C \to E)$. Further,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   261
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   262
\hat{g}(\widetilde{q}) & = \sum_i (a_i \tensor g(\widetilde{q_i}) \tensor b_i) - 1 \tensor (\sum_i a_i g(\widetilde{q_i}) b_i) \tensor 1 \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   263
                       & = q - 0
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   264
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   265
(here we used that $g$ is a map of $C$-$C$ bimodules, and that $\sum_i a_i q_i b_i = 0$).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   266
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   267
Identical arguments show that the functors
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   268
\begin{equation}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   269
\label{eq:ker-functor}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   270
M \mapsto \ker(C^{\tensor k} \tensor M \tensor C^{\tensor l} \to M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   271
\end{equation}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   272
are all exact too. Moreover, tensor products of such functors with each
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   273
other and with $C$ or $\ker(C^{\tensor k} \to C)$ (e.g., producing the functor $M \mapsto \ker(M \tensor C \to M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   274
\tensor C \tensor \ker(C \tensor C \to M)$) are all still exact.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   275
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   276
Finally, then we see that the functor $K_*$ is simply an (infinite)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   277
direct sum of copies of this sort of functor. The direct sum is indexed by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   278
configurations of nested blobs and of labels; for each such configuration, we have one of the above tensor product functors,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   279
with the labels of twig blobs corresponding to tensor factors as in \eqref{eq:ker-functor} or $\ker(C^{\tensor k} \to C)$, and all other labelled points corresponding
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   280
to tensor factors of $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   281
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   282
\begin{proof}[Proof of Lemma \ref{lem:hochschild-coinvariants}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   283
We show that $H_0(K_*(M))$ is isomorphic to the coinvariants of $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   284
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   285
We define a map $\ev: K_0(M) \to M$. If $x \in K_0(M)$ has the label $m \in M$ at $*$, and labels $c_i \in C$ at the other labeled points of $S^1$, reading clockwise from $*$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   286
we set $\ev(x) = m c_1 \cdots c_k$. We can think of this as $\ev : M \tensor C^{\tensor k} \to M$, for each direct summand of $K_0(M)$ indexed by a configuration of labeled points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   287
There is a quotient map $\pi: M \to \coinv{M}$, and the composition $\pi \compose \ev$ is well-defined on the quotient $H_0(K_*(M))$; if $y \in K_1(M)$, the blob in $y$ either contains $*$ or does not. If it doesn't, then
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   288
suppose $y$ has label $m$ at $*$, labels $c_i$ at other labeled points outside the blob, and the field inside the blob is a sum, with the $j$-th term having
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   289
labeled points $d_{j,i}$. Then $\sum_j d_{j,1} \tensor \cdots \tensor d_{j,k_j} \in \ker(\DirectSum_k C^{\tensor k} \to C)$, and so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   290
$\ev(\bdy y) = 0$, because $$C^{\tensor \ell_1} \tensor \ker(\DirectSum_k C^{\tensor k} \to C) \tensor C^{\tensor \ell_2} \subset \ker(\DirectSum_k C^{\tensor k} \to C).$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   291
Similarly, if $*$ is contained in the blob, then the blob label is a sum, with the $j$-th term have labelled points $d_{j,i}$ to the left of $*$, $m_j$ at $*$, and $d_{j,i}'$ to the right of $*$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   292
and there are labels $c_i$ at the labeled points outside the blob. We know that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   293
$$\sum_j d_{j,1} \tensor \cdots \tensor d_{j,k_j} \tensor m_j \tensor d_{j,1}' \tensor \cdots \tensor d_{j,k'_j}' \in \ker(\DirectSum_{k,k'} C^{\tensor k} \tensor M \tensor C^{\tensor k'} \tensor \to M),$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   294
and so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   295
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   296
\ev(\bdy y) & = \sum_j m_j d_{j,1}' \cdots d_{j,k'_j}' c_1 \cdots c_k d_{j,1} \cdots d_{j,k_j} \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   297
            & = \sum_j d_{j,1} \cdots d_{j,k_j} m_j d_{j,1}' \cdots d_{j,k'_j}' c_1 \cdots c_k \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   298
            & = 0
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   299
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   300
where this time we use the fact that we're mapping to $\coinv{M}$, not just $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   301
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   302
The map $\pi \compose \ev: H_0(K_*(M)) \to \coinv{M}$ is clearly surjective ($\ev$ surjects onto $M$); we now show that it's injective. \todo{}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   303
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   304
\begin{proof}[Proof of Lemma \ref{lem:hochschild-free}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   305
We show that $K_*(C\otimes C)$ is
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   306
quasi-isomorphic to the 0-step complex $C$. We'll do this in steps, establishing quasi-isomorphisms and homotopy equivalences
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   307
$$K_*(C \tensor C) \quismto K'_* \htpyto K''_* \quismto C.$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   308
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   309
Let $K'_* \sub K_*(C\otimes C)$ be the subcomplex where the label of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   310
the point $*$ is $1 \otimes 1 \in C\otimes C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   311
We will show that the inclusion $i: K'_* \to K_*(C\otimes C)$ is a quasi-isomorphism.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   312
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   313
Fix a small $\ep > 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   314
Let $B_\ep$ be the ball of radius $\ep$ around $* \in S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   315
Let $K_*^\ep \sub K_*(C\otimes C)$ be the subcomplex
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   316
generated by blob diagrams $b$ such that $B_\ep$ is either disjoint from
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   317
or contained in each blob of $b$, and the only labeled point inside $B_\ep$ is $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   318
%and the two boundary points of $B_\ep$ are not labeled points of $b$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   319
For a field $y$ on $B_\ep$, let $s_\ep(y)$ be the equivalent picture with~$*$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   320
labeled by $1\otimes 1$ and the only other labeled points at distance $\pm\ep/2$ from $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   321
(See Figure \ref{fig:sy}.) Note that $y - s_\ep(y) \in U(B_\ep)$. We can think of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   322
$\sigma_\ep$ as a chain map $K_*^\ep \to K_*^\ep$ given by replacing the restriction $y$ to $B_\ep$ of each field
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   323
appearing in an element of  $K_*^\ep$ with $s_\ep(y)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   324
Note that $\sigma_\ep(x) \in K'_*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   325
\begin{figure}[!ht]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   326
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   327
y & = \mathfig{0.2}{hochschild/y} &
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   328
s_\ep(y) & = \mathfig{0.2}{hochschild/sy}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   329
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   330
\caption{Defining $s_\ep$.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   331
\label{fig:sy}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   332
\end{figure}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   333
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   334
Define a degree 1 chain map $j_\ep : K_*^\ep \to K_*^\ep$ as follows.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   335
Let $x \in K_*^\ep$ be a blob diagram.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   336
If $*$ is not contained in any twig blob, $j_\ep(x)$ is obtained by adding $B_\ep$ to
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   337
$x$ as a new twig blob, with label $y - s_\ep(y)$, where $y$ is the restriction of $x$ to $B_\ep$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   338
If $*$ is contained in a twig blob $B$ with label $u = \sum z_i$, $j_\ep(x)$ is obtained as follows.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   339
Let $y_i$ be the restriction of $z_i$ to $B_\ep$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   340
Let $x_i$ be equal to $x$ outside of $B$, equal to $z_i$ on $B \setmin B_\ep$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   341
and have an additional blob $B_\ep$ with label $y_i - s_\ep(y_i)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   342
Define $j_\ep(x) = \sum x_i$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   343
\nn{need to check signs coming from blob complex differential}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   344
Note that if $x \in K'_* \cap K_*^\ep$ then $j_\ep(x) \in K'_*$ also.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   345
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   346
The key property of $j_\ep$ is
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   347
\eq{
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   348
    \bd j_\ep + j_\ep \bd = \id - \sigma_\ep.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   349
}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   350
If $j_\ep$ were defined on all of $K_*(C\otimes C)$, this would show that $\sigma_\ep$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   351
is a homotopy inverse to the inclusion $K'_* \to K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   352
One strategy would be to try to stitch together various $j_\ep$ for progressively smaller
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   353
$\ep$ and show that $K'_*$ is homotopy equivalent to $K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   354
Instead, we'll be less ambitious and just show that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   355
$K'_*$ is quasi-isomorphic to $K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   356
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   357
If $x$ is a cycle in $K_*(C\otimes C)$, then for sufficiently small $\ep$ we have
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   358
$x \in K_*^\ep$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   359
(This is true for any chain in $K_*(C\otimes C)$, since chains are sums of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   360
finitely many blob diagrams.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   361
Then $x$ is homologous to $s_\ep(x)$, which is in $K'_*$, so the inclusion map
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   362
$K'_* \sub K_*(C\otimes C)$ is surjective on homology.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   363
If $y \in K_*(C\otimes C)$ and $\bd y = x \in K'_*$, then $y \in K_*^\ep$ for some $\ep$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   364
and
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   365
\eq{
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   366
    \bd y = \bd (\sigma_\ep(y) + j_\ep(x)) .
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   367
}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   368
Since $\sigma_\ep(y) + j_\ep(x) \in F'$, it follows that the inclusion map is injective on homology.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   369
This completes the proof that $K'_*$ is quasi-isomorphic to $K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   370
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   371
Let $K''_* \sub K'_*$ be the subcomplex of $K'_*$ where $*$ is not contained in any blob.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   372
We will show that the inclusion $i: K''_* \to K'_*$ is a homotopy equivalence.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   373
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   374
First, a lemma:  Let $G''_*$ and $G'_*$ be defined the same as $K''_*$ and $K'_*$, except with
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   375
$S^1$ replaced some (any) neighborhood of $* \in S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   376
Then $G''_*$ and $G'_*$ are both contractible
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   377
and the inclusion $G''_* \sub G'_*$ is a homotopy equivalence.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   378
For $G'_*$ the proof is the same as in (\ref{bcontract}), except that the splitting
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   379
$G'_0 \to H_0(G'_*)$ concentrates the point labels at two points to the right and left of $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   380
For $G''_*$ we note that any cycle is supported \nn{need to establish terminology for this; maybe
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   381
in ``basic properties" section above} away from $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   382
Thus any cycle lies in the image of the normal blob complex of a disjoint union
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   383
of two intervals, which is contractible by (\ref{bcontract}) and (\ref{disjunion}).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   384
Actually, we need the further (easy) result that the inclusion
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   385
$G''_* \to G'_*$ induces an isomorphism on $H_0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   386
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   387
Next we construct a degree 1 map (homotopy) $h: K'_* \to K'_*$ such that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   388
for all $x \in K'_*$ we have
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   389
\eq{
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   390
    x - \bd h(x) - h(\bd x) \in K''_* .
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   391
}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   392
Since $K'_0 = K''_0$, we can take $h_0 = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   393
Let $x \in K'_1$, with single blob $B \sub S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   394
If $* \notin B$, then $x \in K''_1$ and we define $h_1(x) = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   395
If $* \in B$, then we work in the image of $G'_*$ and $G''_*$ (with respect to $B$).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   396
Choose $x'' \in G''_1$ such that $\bd x'' = \bd x$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   397
Since $G'_*$ is contractible, there exists $y \in G'_2$ such that $\bd y = x - x''$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   398
Define $h_1(x) = y$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   399
The general case is similar, except that we have to take lower order homotopies into account.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   400
Let $x \in K'_k$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   401
If $*$ is not contained in any of the blobs of $x$, then define $h_k(x) = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   402
Otherwise, let $B$ be the outermost blob of $x$ containing $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   403
By xxxx above, $x = x' \bullet p$, where $x'$ is supported on $B$ and $p$ is supported away from $B$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   404
So $x' \in G'_l$ for some $l \le k$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   405
Choose $x'' \in G''_l$ such that $\bd x'' = \bd (x' - h_{l-1}\bd x')$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   406
Choose $y \in G'_{l+1}$ such that $\bd y = x' - x'' - h_{l-1}\bd x'$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   407
Define $h_k(x) = y \bullet p$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   408
This completes the proof that $i: K''_* \to K'_*$ is a homotopy equivalence.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   409
\nn{need to say above more clearly and settle on notation/terminology}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   410
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   411
Finally, we show that $K''_*$ is contractible.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   412
\nn{need to also show that $H_0$ is the right thing; easy, but I won't do it now}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   413
Let $x$ be a cycle in $K''_*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   414
The union of the supports of the diagrams in $x$ does not contain $*$, so there exists a
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   415
ball $B \subset S^1$ containing the union of the supports and not containing $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   416
Adding $B$ as a blob to $x$ gives a contraction.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   417
\nn{need to say something else in degree zero}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   418
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   419
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   420
We can also describe explicitly a map from the standard Hochschild
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   421
complex to the blob complex on the circle. \nn{What properties does this
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   422
map have?}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   423
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   424
\begin{figure}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   425
$$\mathfig{0.6}{barycentric/barycentric}$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   426
\caption{The Hochschild chain $a \tensor b \tensor c$ is sent to
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   427
the sum of six blob $2$-chains, corresponding to a barycentric subdivision of a $2$-simplex.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   428
\label{fig:Hochschild-example}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   429
\end{figure}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   430
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   431
As an example, Figure \ref{fig:Hochschild-example} shows the image of the Hochschild chain $a \tensor b \tensor c$. Only the $0$-cells are shown explicitly.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   432
The edges marked $x, y$ and $z$ carry the $1$-chains
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   433
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   434
x & = \mathfig{0.1}{barycentric/ux} & u_x = \mathfig{0.1}{barycentric/ux_ca} - \mathfig{0.1}{barycentric/ux_c-a} \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   435
y & = \mathfig{0.1}{barycentric/uy} & u_y = \mathfig{0.1}{barycentric/uy_cab} - \mathfig{0.1}{barycentric/uy_ca-b} \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   436
z & = \mathfig{0.1}{barycentric/uz} & u_z = \mathfig{0.1}{barycentric/uz_c-a-b} - \mathfig{0.1}{barycentric/uz_cab}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   437
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   438
and the $2$-chain labelled $A$ is
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   439
\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   440
A = \mathfig{0.1}{barycentric/Ax}+\mathfig{0.1}{barycentric/Ay}.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   441
\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   442
Note that we then have
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   443
\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   444
\bdy A = x+y+z.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   445
\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   446
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   447
In general, the Hochschild chain $\Tensor_{i=1}^n a_i$ is sent to the sum of $n!$ blob $(n-1)$-chains, indexed by permutations,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   448
$$\phi\left(\Tensor_{i=1}^n a_i\right) = \sum_{\pi} \phi^\pi(a_1, \ldots, a_n)$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   449
with ... (hmmm, problems making this precise; you need to decide where to put the labels, but then it's hard to make an honest chain map!)