text/a_inf_blob.tex
changeset 134 395bd663e20d
parent 133 7a880cdaac70
child 141 e1d24be683bb
equal deleted inserted replaced
133:7a880cdaac70 134:395bd663e20d
    23 \begin{thm} \label{product_thm}
    23 \begin{thm} \label{product_thm}
    24 The old-fashioned blob complex $\bc_*^C(Y\times F)$ is homotopy equivalent to the
    24 The old-fashioned blob complex $\bc_*^C(Y\times F)$ is homotopy equivalent to the
    25 new-fangled blob complex $\bc_*^\cF(Y)$.
    25 new-fangled blob complex $\bc_*^\cF(Y)$.
    26 \end{thm}
    26 \end{thm}
    27 
    27 
    28 \begin{proof}
    28 \input{text/smallblobs}
       
    29 
       
    30 \begin{proof}[Proof of Theorem \ref{product_thm}]
    29 We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}.
    31 We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}.
    30 
    32 
    31 First we define a map 
    33 First we define a map 
    32 \[
    34 \[
    33 	\psi: \bc_*^\cF(Y) \to \bc_*^C(Y\times F) .
    35 	\psi: \bc_*^\cF(Y) \to \bc_*^C(Y\times F) .
   213 
   215 
   214 \nn{to be continued...}
   216 \nn{to be continued...}
   215 \medskip
   217 \medskip
   216 \nn{still to do: fiber bundles, general maps}
   218 \nn{still to do: fiber bundles, general maps}
   217 
   219 
       
   220 \todo{}
       
   221 Various citations we might want to make:
       
   222 \begin{itemize}
       
   223 \item \cite{MR2061854} McClure and Smith's review article
       
   224 \item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad)
       
   225 \item \cite{MR0236922,MR0420609} Boardman and Vogt
       
   226 \item \cite{MR1256989} definition of framed little-discs operad
       
   227 \end{itemize}
       
   228 
       
   229 We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction
       
   230 \begin{itemize}
       
   231 %\mbox{}% <-- gets the indenting right
       
   232 \item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
       
   233 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
   234 
       
   235 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
       
   236 $A_\infty$ module for $\bc_*(Y \times I)$.
       
   237 
       
   238 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
       
   239 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
       
   240 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
       
   241 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
       
   242 \begin{equation*}
       
   243 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]}
       
   244 \end{equation*}
       
   245 \end{itemize}
       
   246