text/evmap.tex
changeset 521 4a988e00468a
parent 520 987d0010d326
child 523 352389c6ddcf
equal deleted inserted replaced
520:987d0010d326 521:4a988e00468a
   215 \item \nn{something about blob labels and vector space structure}
   215 \item \nn{something about blob labels and vector space structure}
   216 \item \nn{maybe also something about gluing}
   216 \item \nn{maybe also something about gluing}
   217 \end{itemize}
   217 \end{itemize}
   218 
   218 
   219 Next we define $\btc_*(X)$ to be the total complex of the double complex (denoted $\btc_{**}$) 
   219 Next we define $\btc_*(X)$ to be the total complex of the double complex (denoted $\btc_{**}$) 
   220 whose $(i,j)$ entry is $C_i(\BD_j)$, the singular $i$-chains on the space of $j$-blob diagrams.
   220 whose $(i,j)$ entry is $C_j(\BD_i)$, the singular $j$-chains on the space of $i$-blob diagrams.
   221 The horizontal boundary of the double complex,
   221 The vertical boundary of the double complex,
   222 denoted $\bd_t$, is the singular boundary, and the vertical boundary, denoted $\bd_b$, is
   222 denoted $\bd_t$, is the singular boundary, and the horizontal boundary, denoted $\bd_b$, is
   223 the blob boundary.
   223 the blob boundary.
   224 
   224 
   225 We will regard $\bc_*(X)$ as the subcomplex $\btc_{0*}(X) \sub \btc_{**}(X)$.
   225 We will regard $\bc_*(X)$ as the subcomplex $\btc_{*0}(X) \sub \btc_{**}(X)$.
   226 The main result of this subsection is
   226 The main result of this subsection is
   227 
   227 
   228 \begin{lemma} \label{lem:bt-btc}
   228 \begin{lemma} \label{lem:bt-btc}
   229 The inclusion $\bc_*(X) \sub \btc_*(X)$ is a homotopy equivalence
   229 The inclusion $\bc_*(X) \sub \btc_*(X)$ is a homotopy equivalence
   230 \end{lemma}
   230 \end{lemma}
   231 
   231 
   232 Before giving the proof we need a few preliminary results.
   232 Before giving the proof we need a few preliminary results.
       
   233 
       
   234 \begin{lemma} \label{bt-contract}
       
   235 $\btc_*(B^n)$ is contractible (acyclic in positive degrees).
       
   236 \end{lemma}
       
   237 \begin{proof}
       
   238 We will construct a contracting homotopy $h: \btc_*(B^n)\to \btc_*(B^n)$.
       
   239 
       
   240 We will assume a splitting $s:H_0(\btc_*(B^n))\to \btc_0(B^n)$
       
   241 of the quotient map $q:\btc_0(B^n)\to H_0(\btc_*(B^n))$.
       
   242 Let $r = s\circ q$.
       
   243 
       
   244 For $x\in \btc_{ij}$ with $i\ge 1$ define
       
   245 \[
       
   246 	h(x) = e(x) ,
       
   247 \]
       
   248 where
       
   249 \[
       
   250 	e: \btc_{ij}\to\btc_{i+1,j}
       
   251 \]
       
   252 adds an outermost blob, equal to all of $B^n$, to the $j$-parameter family of blob diagrams.
       
   253 
       
   254 A generator $y\in \btc_{0j}$ is a map $y:P\to \BD_0$, where $P$ is some $j$-dimensional polyhedron.
       
   255 We define $r(y)\in \btc_{0j}$ to be the constant function $r\circ y : P\to \BD_0$.
       
   256 Let $c(r(y))\in \btc_{0,j+1}$ be the constant map from the cone of $P$ to $\BD_0$ taking
       
   257 the same value (i.e.\ $r(y(p))$ for any $p\in P$).
       
   258 Let $e(y - r(y)) \in \btc_{1j}$ denote the $j$-parameter family of 1-blob diagrams
       
   259 whose value at $p\in P$ is the blob $B^n$ with label $y(p) - r(y(p))$.
       
   260 Now define, for $y\in \btc_{0j}$,
       
   261 \[
       
   262 	h(y) = e(y - r(y)) + c(r(y)) .
       
   263 \]
       
   264 \nn{up to sign, at least}
       
   265 
       
   266 We must now verify that $h$ does the job it was intended to do.
       
   267 For $x\in \btc_{ij}$ with $i\ge 2$ we have
       
   268 \nn{ignoring signs}
       
   269 \begin{align*}
       
   270 	\bd h(x) + h(\bd x) &= \bd(e(x)) + e(\bd x) \\
       
   271 			&= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x) + e(\bd_t x) \\
       
   272 			&= \bd_b(e(x)) + e(\bd_b x) \quad\quad\text{(since $\bd_t(e(x)) = e(\bd_t x)$)} \\
       
   273 			&= x .
       
   274 \end{align*}
       
   275 For $x\in \btc_{1j}$ we have
       
   276 \nn{ignoring signs}
       
   277 \begin{align*}
       
   278 	\bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) + c(r(\bd_b x)) + e(\bd_t x) \\
       
   279 			&= \bd_b(e(x)) + e(\bd_b x) \quad\quad\text{(since $r(\bd_b x) = 0$)} \\
       
   280 			&= x .
       
   281 \end{align*}
       
   282 For $x\in \btc_{0j}$ with $j\ge 1$ we have
       
   283 \nn{ignoring signs}
       
   284 \begin{align*}
       
   285 	\bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(e(x - r(x))) + \bd_t(c(r(x))) + 
       
   286 											e(\bd_t x - r(\bd_t x)) + c(r(\bd_t x)) \\
       
   287 			&= x - r(x) + \bd_t(c(r(x))) + c(r(\bd_t x)) \\
       
   288 			&= x - r(x) + r(x) \\
       
   289 			&= x.
       
   290 \end{align*}
       
   291 For $x\in \btc_{00}$ we have
       
   292 \nn{ignoring signs}
       
   293 \begin{align*}
       
   294 	\bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(c(r(x))) \\
       
   295 			&= x - r(x) + r(x) - r(x)\\
       
   296 			&= x - r(x).
       
   297 \end{align*}
       
   298 \end{proof}
       
   299 
   233 
   300 
   234 
   301 
   235 
   302 
   236 
   303 
   237 
   304