blob1.tex
changeset 32 538f38ddf395
parent 31 e155c518ce31
child 33 0535a42fb804
equal deleted inserted replaced
31:e155c518ce31 32:538f38ddf395
   924 \begin{thm}
   924 \begin{thm}
   925 Topological $A_\infty$-$1$-categories are equivalent to `standard'
   925 Topological $A_\infty$-$1$-categories are equivalent to `standard'
   926 $A_\infty$-$1$-categories.
   926 $A_\infty$-$1$-categories.
   927 \end{thm}
   927 \end{thm}
   928 
   928 
   929 Before proving this theorem, we embark upon a long string of definitions. For expository purposes, we begin with the $n=1$ special cases, and define
   929 Before proving this theorem, we embark upon a long string of definitions. 
       
   930 \kevin{the \\kevin macro seems to be truncating text of the left side of the page}
       
   931 For expository purposes, we begin with the $n=1$ special cases, and define
   930 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
   932 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
   931 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
   933 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
   932 \nn{Something about duals?}
   934 \nn{Something about duals?}
   933 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
   935 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
       
   936 \kevin{probably we should say something about the relation
       
   937 to [framed] $E_\infty$ algebras}
   934 
   938 
   935 \begin{defn}
   939 \begin{defn}
   936 \label{defn:topological-algebra}%
   940 \label{defn:topological-algebra}%
   937 A ``topological $A_\infty$-algebra'' $A$ consists of the data
   941 A ``topological $A_\infty$-algebra'' $A$ consists of the following data.
   938 \begin{enumerate}
   942 \begin{enumerate}
   939 \item for each $1$-manifold $J$ diffeomorphic to the standard interval $I=\left[0,1\right]$, a complex of vector spaces $A(J)$,
   943 \item For each $1$-manifold $J$ diffeomorphic to the standard interval 
       
   944 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
   940 % either roll functoriality into the evaluation map
   945 % either roll functoriality into the evaluation map
   941 \item and for each pair of intervals $J,J'$ an `evaluation' chain map $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$,
   946 \item For each pair of intervals $J,J'$ an `evaluation' chain map 
   942 \item and a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   947 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
       
   948 \item For each decomposition of intervals $J = J'\cup J''$,
       
   949 a gluing map $\gl_{J,J'} : A(J') \tensor A(J'') \to A(J)$.
   943 % or do it as two separate pieces of data
   950 % or do it as two separate pieces of data
   944 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
   951 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
   945 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
   952 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
   946 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   953 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   947 \end{enumerate}
   954 \end{enumerate}
   948 satisfying the following conditions.
   955 This data is required to satisfy the following conditions.
   949 \begin{itemize}
   956 \begin{itemize}
   950 \item The evaluation chain map is associative, in that the diagram
   957 \item The evaluation chain map is associative, in that the diagram
   951 \begin{equation*}
   958 \begin{equation*}
   952 \xymatrix{
   959 \xymatrix{
   953 \CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J) \ar[r]^{\Id \tensor \ev_{J \to J'}} \ar[d]_{\compose \tensor \Id} &
   960 \CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J) \ar[r]^{\Id \tensor \ev_{J \to J'}} \ar[d]_{\compose \tensor \Id} &
  1016 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
  1023 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
  1017 \begin{align*}
  1024 \begin{align*}
  1018 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
  1025 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
  1019 \end{align*}
  1026 \end{align*}
  1020 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!},
  1027 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!},
       
  1028 \kevin{I think that's fine.  If we recoil at taking inverses,
       
  1029 we should use smooth maps instead of diffeos}
  1021 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
  1030 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
  1022 \end{enumerate}
  1031 \end{enumerate}
  1023 The associativity conditions are trivially satisfied.
  1032 The associativity conditions are trivially satisfied.
  1024 \end{defn}
  1033 \end{defn}
  1025 
  1034