text/ncat.tex
changeset 875 85cebbd771b5
parent 874 4fd165bc745b
child 877 651d16126999
equal deleted inserted replaced
874:4fd165bc745b 875:85cebbd771b5
  1665 
  1665 
  1666 If the disk-like $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
  1666 If the disk-like $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
  1667 then for each marked $n$-ball $M=(B,N)$ and $c\in \cC(\bd B \setminus N)$, the set $\cM(M; c)$ should be an object in that category.
  1667 then for each marked $n$-ball $M=(B,N)$ and $c\in \cC(\bd B \setminus N)$, the set $\cM(M; c)$ should be an object in that category.
  1668 
  1668 
  1669 \begin{lem}[Boundary from domain and range]
  1669 \begin{lem}[Boundary from domain and range]
       
  1670 \label{lem:module-boundary}
  1670 {Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k{-}1$-hemisphere ($1\le k\le n$),
  1671 {Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k{-}1$-hemisphere ($1\le k\le n$),
  1671 $M_i$ is a marked $k{-}1$-ball, and $E = M_1\cap M_2$ is a marked $k{-}2$-hemisphere.
  1672 $M_i$ is a marked $k{-}1$-ball, and $E = M_1\cap M_2$ is a marked $k{-}2$-hemisphere.
  1672 Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
  1673 Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
  1673 two maps $\bd: \cM(M_i)\to \cl\cM(E)$.
  1674 two maps $\bd: \cM(M_i)\to \cl\cM(E)$.
  1674 Then we have an injective map
  1675 Then we have an injective map
  1675 \[
  1676 \[
  1676 	\gl_E : \cM(M_1) \times_{\cl\cM(E)} \cM(M_2) \hookrightarrow \cl\cM(H)
  1677 	\gl_E : \cM(M_1) \times_{\cl\cM(E)} \cM(M_2) \hookrightarrow \cl\cM(H)
  1677 \]
  1678 \]
  1678 which is natural with respect to the actions of homeomorphisms.}
  1679 which is natural with respect to the actions of homeomorphisms.}
  1679 \end{lem}
  1680 \end{lem}
  1680 Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}.
  1681 Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}, and illustrated in Figure \ref{fig:module-boundary}.
       
  1682 \begin{figure}[t]
       
  1683 \tikzset{marked/.style={line width=5pt}}
       
  1684 
       
  1685 \begin{equation*}
       
  1686 \begin{tikzpicture}[baseline=0]
       
  1687 \coordinate (a) at (0,1);
       
  1688 \coordinate (b) at (4,1);
       
  1689 \draw[marked] (a) arc (180:0:2);
       
  1690 \draw (b) -- (a);
       
  1691 \node at (2,2) {$M_1$};
       
  1692 
       
  1693 \draw (0,0) node[fill, circle] {} -- (4,0) node[fill,circle] {};
       
  1694 \node at (-0.6,0) {$E$};
       
  1695 
       
  1696 \draw[marked] (0,-1) arc(-180:0:2);
       
  1697 \draw (4,-1) -- (0,-1);
       
  1698 \node at (2,-2) {$M_2$};
       
  1699 \end{tikzpicture}
       
  1700 \qquad \qquad \qquad
       
  1701 \begin{tikzpicture}[baseline=0]
       
  1702 \draw[marked] (0,0) node {$H$} circle (2);
       
  1703 \end{tikzpicture}
       
  1704 \end{equation*}\caption{The marked hemispheres and marked balls from Lemma \ref{lem:module-boundary}.}
       
  1705 \label{fig:module-boundary}
       
  1706 \end{figure}
  1681 
  1707 
  1682 Let $\cl\cM(H)\trans E$ denote the image of $\gl_E$.
  1708 Let $\cl\cM(H)\trans E$ denote the image of $\gl_E$.
  1683 We will refer to elements of $\cl\cM(H)\trans E$ as ``splittable along $E$" or ``transverse to $E$". 
  1709 We will refer to elements of $\cl\cM(H)\trans E$ as ``splittable along $E$" or ``transverse to $E$". 
  1684 
  1710 
  1685 \noop{ %%%%%%%
  1711 \noop{ %%%%%%%