fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
authorKevin Walker <kevin@canyon23.net>
Wed, 18 Aug 2010 21:05:50 -0700
changeset 512 050dba5e7bdd
parent 511 cd08d1b9d274
child 513 a9ac20b0a0c2
fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
text/a_inf_blob.tex
text/appendixes/comparing_defs.tex
text/comm_alg.tex
text/evmap.tex
text/hochschild.tex
text/ncat.tex
text/tqftreview.tex
--- a/text/a_inf_blob.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/a_inf_blob.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -1,6 +1,6 @@
 %!TEX root = ../blob1.tex
 
-\section{The blob complex for $A_\infty$ $n$-categories}
+\section{The blob complex for \texorpdfstring{$A_\infty$}{A-infinity} \texorpdfstring{$n$}{n}-categories}
 \label{sec:ainfblob}
 Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we make the anticlimactically tautological definition of the blob
 complex $\bc_*(M;\cC)$ to be the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}.
--- a/text/appendixes/comparing_defs.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/appendixes/comparing_defs.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -1,6 +1,6 @@
 %!TEX root = ../../blob1.tex
 
-\section{Comparing $n$-category definitions}
+\section{Comparing \texorpdfstring{$n$}{n}-category definitions}
 \label{sec:comparing-defs}
 
 In \S\ref{sec:example:traditional-n-categories(fields)} we showed how to construct
@@ -22,7 +22,7 @@
 %\nn{cases to cover: (a) plain $n$-cats for $n=1,2$; (b) $n$-cat modules for $n=1$, also 2?;
 %(c) $A_\infty$ 1-cat; (b) $A_\infty$ 1-cat module?; (e) tensor products?}
 
-\subsection{$1$-categories over $\Set$ or $\Vect$}
+\subsection{1-categories over \texorpdfstring{$\Set$ or $\Vect$}{Set or Vect}}
 \label{ssec:1-cats}
 Given a topological $1$-category $\cX$ we construct a $1$-category in the conventional sense, $c(\cX)$.
 This construction is quite straightforward, but we include the details for the sake of completeness, 
@@ -560,7 +560,7 @@
 %\nn{need to find a list of axioms for pivotal 2-cats to check}
 
 
-\subsection{$A_\infty$ $1$-categories}
+\subsection{\texorpdfstring{$A_\infty$}{A-infinity} 1-categories}
 \label{sec:comparing-A-infty}
 In this section, we make contact between the usual definition of an $A_\infty$ category 
 and our definition of a topological $A_\infty$ $1$-category, from \S \ref{ss:n-cat-def}.
--- a/text/comm_alg.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/comm_alg.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -1,6 +1,6 @@
 %!TEX root = ../blob1.tex
 
-\section{Commutative algebras as $n$-categories}
+\section{Commutative algebras as \texorpdfstring{$n$}{n}-categories}
 \label{sec:comm_alg}
 
 If $C$ is a commutative algebra it
--- a/text/evmap.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/evmap.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -1,8 +1,27 @@
 %!TEX root = ../blob1.tex
 
-\section{Action of \texorpdfstring{$\CH{X}$}{$C_*(Homeo(M))$}}
+\section{Action of \texorpdfstring{$\CH{X}$}{C_*(Homeo(M))}}
 \label{sec:evaluation}
 
+
+\nn{new plan: use the sort-of-simplicial space version of
+the blob complex.
+first define it, then show it's hty equivalent to the other def, then observe that
+$CH*$ acts.
+maybe salvage some of the original version of this section as a subsection outlining
+how one might proceed directly.}
+
+
+\subsection{Alternative definitions of the blob complex}
+
+
+\subsection{Action of \texorpdfstring{$\CH{X}$}{C_*(Homeo(M))}}
+
+
+
+
+\subsection{[older version still hanging around]}
+
 \nn{should comment at the start about any assumptions about smooth, PL etc.}
 
 \nn{should maybe mention alternate def of blob complex (sort-of-simplicial space instead of
--- a/text/hochschild.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/hochschild.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -1,6 +1,6 @@
 %!TEX root = ../blob1.tex
 
-\section{Hochschild homology when $n=1$}
+\section{Hochschild homology when \texorpdfstring{$n=1$}{n=1}}
 \label{sec:hochschild}
 
 So far we have provided no evidence that blob homology is interesting in degrees 
--- a/text/ncat.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/ncat.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -3,10 +3,10 @@
 \def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
 \def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
 
-\section{$n$-categories and their modules}
+\section{\texorpdfstring{$n$}{n}-categories and their modules}
 \label{sec:ncats}
 
-\subsection{Definition of $n$-categories}
+\subsection{Definition of \texorpdfstring{$n$}{n}-categories}
 \label{ss:n-cat-def}
 
 Before proceeding, we need more appropriate definitions of $n$-categories, 
@@ -660,7 +660,7 @@
 Conversely, given a topological $n$-category we can construct a system of fields via 
 a colimit construction; see \S \ref{ss:ncat_fields} below.
 
-\subsection{Examples of $n$-categories}
+\subsection{Examples of \texorpdfstring{$n$}{n}-categories}
 \label{ss:ncat-examples}
 
 
@@ -1515,7 +1515,7 @@
 We will define a more general self tensor product (categorified coend) below.
 
 
-\subsection{Morphisms of $A_\infty$ $1$-category modules}
+\subsection{Morphisms of \texorpdfstring{$A_\infty$}{A-infinity} 1-category modules}
 \label{ss:module-morphisms}
 
 In order to state and prove our version of the higher dimensional Deligne conjecture
@@ -1785,7 +1785,7 @@
 
 
 
-\subsection{The $n{+}1$-category of sphere modules}
+\subsection{The \texorpdfstring{$n{+}1$}{n+1}-category of sphere modules}
 \label{ssec:spherecat}
 
 In this subsection we define $n{+}1$-categories $\cS$ of ``sphere modules" 
--- a/text/tqftreview.tex	Tue Aug 03 21:45:10 2010 -0600
+++ b/text/tqftreview.tex	Wed Aug 18 21:05:50 2010 -0700
@@ -47,7 +47,8 @@
 Fix a symmetric monoidal category $\cS$.
 Fields on $n$-manifolds will be enriched over $\cS$.
 Good examples to keep in mind are $\cS = \Set$ or $\cS = \Vect$.
-The presentation here requires that the objects of $\cS$ have an underlying set, but this could probably be avoided if desired.
+The presentation here requires that the objects of $\cS$ have an underlying set, 
+but this could probably be avoided if desired.
 
 A $n$-dimensional {\it system of fields} in $\cS$
 is a collection of functors $\cC_k : \cM_k \to \Set$ for $0 \leq k \leq n$
@@ -226,7 +227,7 @@
 } % end \noop
 
 
-\subsection{Systems of fields from $n$-categories}
+\subsection{Systems of fields from \texorpdfstring{$n$}{n}-categories}
 \label{sec:example:traditional-n-categories(fields)}
 We now describe in more detail Example \ref{ex:traditional-n-categories(fields)}, 
 systems of fields coming from embedded cell complexes labeled
@@ -245,7 +246,8 @@
 One of the advantages of string diagrams over pasting diagrams is that one has more
 flexibility in slicing them up in various ways.
 In addition, string diagrams are traditional in quantum topology.
-The diagrams predate by many years the terms ``string diagram" and ``quantum topology", e.g. \cite{MR0281657,MR776784} % both penrose
+The diagrams predate by many years the terms ``string diagram" and 
+``quantum topology", e.g. \cite{MR0281657,MR776784} % both penrose
 
 If $X$ has boundary, we require that the cell decompositions are in general
 position with respect to the boundary --- the boundary intersects each cell
@@ -377,7 +379,8 @@
 In this subsection we briefly review the construction of a TQFT from a system of fields and local relations.
 As usual, see \cite{kw:tqft} for more details.
 
-We can think of a path integral $Z(W)$ of an $n+1$-manifold (which we're not defining in this context; this is just motivation) as assigning to each
+We can think of a path integral $Z(W)$ of an $n+1$-manifold 
+(which we're not defining in this context; this is just motivation) as assigning to each
 boundary condition $x\in \cC(\bd W)$ a complex number $Z(W)(x)$.
 In other words, $Z(W)$ lies in $\c^{\lf(\bd W)}$, the vector space of linear
 maps $\lf(\bd W)\to \c$.
@@ -414,7 +417,10 @@
 requires that the starting data (fields and local relations) satisfy additional
 conditions.
 We do not assume these conditions here, so when we say ``TQFT" we mean a decapitated TQFT
-that lacks its $n{+}1$-dimensional part. Such a ``decapitated'' TQFT is sometimes also called an $n+\epsilon$ or $n+\frac{1}{2}$ dimensional TQFT, referring to the fact that it assigns maps to mapping cylinders between $n$-manifolds, but nothing to arbitrary $n{+}1$-manifolds.
+that lacks its $n{+}1$-dimensional part. 
+Such a ``decapitated'' TQFT is sometimes also called an $n+\epsilon$ or 
+$n+\frac{1}{2}$ dimensional TQFT, referring to the fact that it assigns maps to 
+mapping cylinders between $n$-manifolds, but nothing to arbitrary $n{+}1$-manifolds.
 
 Let $Y$ be an $n{-}1$-manifold.
 Define a linear 1-category $A(Y)$ as follows.
@@ -434,4 +440,5 @@
 \[
 	A(X) \cong A(X_1; -) \otimes_{A(Y)} A(X_2; -) .
 \]
-A proof of this gluing formula appears in \cite{kw:tqft}, but it also becomes a special case of Theorem \ref{thm:gluing} by taking $0$-th homology.
+A proof of this gluing formula appears in \cite{kw:tqft}, but it also becomes a 
+special case of Theorem \ref{thm:gluing} by taking $0$-th homology.