adding some things to the bibliography
authorscott@6e1638ff-ae45-0410-89bd-df963105f760
Mon, 07 Jul 2008 03:20:11 +0000
changeset 37 2f677e283c26
parent 36 f5e553fbd693
child 38 0a43a274744a
adding some things to the bibliography
bibliography/bibliography.bib
blob1.tex
preamble.tex
text/article_preamble.tex
--- a/bibliography/bibliography.bib	Mon Jul 07 01:25:14 2008 +0000
+++ b/bibliography/bibliography.bib	Mon Jul 07 03:20:11 2008 +0000
@@ -36,6 +36,85 @@
       note = {\mathscinet{MR1854636} \arxiv{math.RA/9910179}},
 }
 
+@incollection {MR2061854,
+    AUTHOR = {McClure, James E. and Smith, Jeffrey H.},
+     TITLE = {Operads and cosimplicial objects: an introduction},
+ BOOKTITLE = {Axiomatic, enriched and motivic homotopy theory},
+    SERIES = {NATO Sci. Ser. II Math. Phys. Chem.},
+    VOLUME = {131},
+     PAGES = {133--171},
+ PUBLISHER = {Kluwer Acad. Publ.},
+   ADDRESS = {Dordrecht},
+      YEAR = {2004},
+   MRCLASS = {55P48 (18D50)},
+  MRNUMBER = {MR2061854 (2005b:55018)},
+MRREVIEWER = {David Chataur},
+      note = {\mathscinet{MR2061854} \arxiv{math.QA/0402117}},
+}
+
+@book {MR0420610,
+    AUTHOR = {May, J. P.},
+     TITLE = {The geometry of iterated loop spaces},
+ PUBLISHER = {Springer-Verlag},
+   ADDRESS = {Berlin},
+      YEAR = {1972},
+     PAGES = {viii+175},
+   MRCLASS = {55D35},
+  MRNUMBER = {MR0420610 (54 \#8623b)},
+MRREVIEWER = {J. Stasheff},
+      note = {Lectures Notes in Mathematics, Vol. 271 \mathscinet{MR0420610} \href{http://www.math.uchicago.edu/~may/BOOKS/gils.pdf}{available online}},
+}
+
+@article {MR0236922,
+    AUTHOR = {Boardman, J. M. and Vogt, R. M.},
+     TITLE = {Homotopy-everything {$H$}-spaces},
+   JOURNAL = {Bull. Amer. Math. Soc.},
+  FJOURNAL = {Bulletin of the American Mathematical Society},
+    VOLUME = {74},
+      YEAR = {1968},
+     PAGES = {1117--1122},
+      ISSN = {0002-9904},
+   MRCLASS = {55.42},
+  MRNUMBER = {MR0236922 (38 \#5215)},
+MRREVIEWER = {R. J. Milgram},
+      note = {\mathscinet{MR0236922} \doi{10.1090/S0002-9904-1968-12070-1}},
+}
+
+@book {MR0420609,
+    AUTHOR = {Boardman, J. M. and Vogt, R. M.},
+     TITLE = {Homotopy invariant algebraic structures on topological spaces},
+    SERIES = {Lecture Notes in Mathematics, Vol. 347},
+ PUBLISHER = {Springer-Verlag},
+   ADDRESS = {Berlin},
+      YEAR = {1973},
+     PAGES = {x+257},
+   MRCLASS = {55D35},
+  MRNUMBER = {MR0420609 (54 \#8623a)},
+MRREVIEWER = {J. Stasheff},
+      note = {\mathscinet{MR0420609}},
+}
+
+%The framed little discs operad:
+@article {MR1256989,
+    AUTHOR = {Getzler, E.},
+     TITLE = {Batalin-{V}ilkovisky algebras and two-dimensional topological
+              field theories},
+   JOURNAL = {Comm. Math. Phys.},
+  FJOURNAL = {Communications in Mathematical Physics},
+    VOLUME = {159},
+      YEAR = {1994},
+    NUMBER = {2},
+     PAGES = {265--285},
+      ISSN = {0010-3616},
+     CODEN = {CMPHAY},
+   MRCLASS = {81T70 (17B81 55Q99 58Z05 81T40)},
+  MRNUMBER = {MR1256989 (95h:81099)},
+MRREVIEWER = {J. Stasheff},
+      note = {\mathscinet{MR1256989} \euclid{1104254599}},
+}
+
+
+
 
 
 @article {MR1917056,
--- a/blob1.tex	Mon Jul 07 01:25:14 2008 +0000
+++ b/blob1.tex	Mon Jul 07 03:20:11 2008 +0000
@@ -926,24 +926,33 @@
 $A_\infty$-$1$-categories.
 \end{thm}
 
-Before proving this theorem, we embark upon a long string of definitions. 
-\kevin{the \\kevin macro seems to be truncating text of the left side of the page}
+Before proving this theorem, we embark upon a long string of definitions.
 For expository purposes, we begin with the $n=1$ special cases, and define
 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
 \nn{Something about duals?}
 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
 \kevin{probably we should say something about the relation
-to [framed] $E_\infty$ algebras}
+to [framed] $E_\infty$ algebras
+}
+
+\todo{}
+Various citations we might want to make:
+\begin{itemize}
+\item \cite{MR2061854} McClure and Smith's review article
+\item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad)
+\item \cite{MR0236922,MR0420609} Boardman and Vogt
+\item \cite{MR1256989} definition of framed little-discs operad
+\end{itemize}
 
 \begin{defn}
 \label{defn:topological-algebra}%
 A ``topological $A_\infty$-algebra'' $A$ consists of the following data.
 \begin{enumerate}
-\item For each $1$-manifold $J$ diffeomorphic to the standard interval 
+\item For each $1$-manifold $J$ diffeomorphic to the standard interval
 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
 % either roll functoriality into the evaluation map
-\item For each pair of intervals $J,J'$ an `evaluation' chain map 
+\item For each pair of intervals $J,J'$ an `evaluation' chain map
 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
 \item For each decomposition of intervals $J = J'\cup J''$,
 a gluing map $\gl_{J,J'} : A(J') \tensor A(J'') \to A(J)$.
@@ -963,7 +972,7 @@
 A(J'')
 }
 \end{equation*}
-commutes. 
+commutes.
 \kevin{commutes up to homotopy? in the blob case the evaluation map is ambiguous up to homotopy}
 (Here the map $\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$ is a composition: take products of singular chains first, then compose diffeomorphisms.)
 %% or the version for separate pieces of data:
@@ -1043,17 +1052,17 @@
 The definition of a module follows closely the definition of an algebra or category.
 \begin{defn}
 \label{defn:topological-module}%
-A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ 
+A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$
 consists of the following data.
 \begin{enumerate}
 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces.
-\item For each pair of such marked intervals, 
+\item For each pair of such marked intervals,
 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
 \item For each decomposition $K = J\cup K'$ of the marked interval
 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
 \end{enumerate}
-The above data is required to satisfy 
+The above data is required to satisfy
 conditions analogous to those in Definition \ref{defn:topological-algebra}.
 \end{defn}
 
@@ -1068,9 +1077,9 @@
 There are evaluation maps corresponding to gluing unmarked intervals
 to the unmarked ends of $K$ and $L$.
 
-Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a 
+Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a
 codimension-0 submanifold of $\bdy X$.
-Then the the assignment $K,L \mapsto \bc*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the 
+Then the the assignment $K,L \mapsto \bc*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the
 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
 
 Next we define the coend
@@ -1080,13 +1089,13 @@
 
 \begin{itemize}
 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
-\item For each pair of intervals $N,N'$ an evaluation chain map 
+\item For each pair of intervals $N,N'$ an evaluation chain map
 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
 \item For each decomposition of intervals $N = K\cup L$,
 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
 \item The evaluation maps are associative.
 \nn{up to homotopy?}
-\item Gluing is strictly associative.  
+\item Gluing is strictly associative.
 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
 agree.
@@ -1097,8 +1106,8 @@
 and gluing maps, they factor through the universal thing.
 \nn{need to say this in more detail, in particular give the properties of the factoring map}
 
-Given $X$ and $Y\du -Y \sub \bdy X$ as above, the assignment 
-$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y)$ clearly has the structure described 
+Given $X$ and $Y\du -Y \sub \bdy X$ as above, the assignment
+$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y)$ clearly has the structure described
 in the above bullet points.
 Showing that it is the universal such thing is the content of the gluing theorem proved below.
 
--- a/preamble.tex	Mon Jul 07 01:25:14 2008 +0000
+++ b/preamble.tex	Mon Jul 07 03:20:11 2008 +0000
@@ -51,6 +51,7 @@
 \fi
 \newcommand{\arxiv}[1]{\href{http://arxiv.org/abs/#1}{\tt arXiv:\nolinkurl{#1}}}
 \newcommand{\doi}[1]{\href{http://dx.doi.org/#1}{{\tt DOI:#1}}}
+\newcommand{\euclid}[1]{\href{http://projecteuclid.org/euclid.cmp/#1}{{\tt at Project Euclid: #1}}}
 \newcommand{\mathscinet}[1]{\href{http://www.ams.org/mathscinet-getitem?mr=#1}{\tt #1}}
 
 
@@ -76,7 +77,7 @@
 
 % Marginal notes in draft mode -----------------------------------
 \newcommand{\scott}[1]{\stepcounter{comment}{{\color{blue} $\star^{(\arabic{comment})}$}}\marginpar{\color{blue}  $\star^{(\arabic{comment})}$ \usefont{T1}{scott}{m}{n}  #1 --S}}     % draft mode
-\newcommand{\kevin}[1]{\stepcounter{comment}{\color{green} $\star^{(\arabic{comment})}$}\marginpar{\color{green}  $\star^{(\arabic{comment})}$  #1 --K}}     % draft mode
+\newcommand{\kevin}[1]{\stepcounter{comment}{\color{green} $\star^{(\arabic{comment})}$}\marginpar{\color{green}  $\star^{(\arabic{comment})}$  #1 --K}}     % draft mode
 \newcommand{\comment}[1]{\stepcounter{comment}$\star^{(\arabic{comment})}$\marginpar{\tiny $\star^{(\arabic{comment})}$ #1}}     % draft mode
 \newcounter{comment}
 \newcommand{\noop}[1]{}
--- a/text/article_preamble.tex	Mon Jul 07 01:25:14 2008 +0000
+++ b/text/article_preamble.tex	Mon Jul 07 03:20:11 2008 +0000
@@ -20,10 +20,10 @@
 %\marginparwidth 0pt%
 %\marginparsep 0pt
 
-\textwidth   5.5in%
-\textheight  9.0in%
-\oddsidemargin 12pt%
-\evensidemargin 12pt
+%\textwidth   5.5in%
+%\textheight  9.0in%
+%\oddsidemargin 12pt%
+%\evensidemargin 12pt%
 
-\topmargin -.6in%
-\headsep .5in
+%\topmargin -.6in%
+%\headsep .5in