text/ncat.tex
author Kevin Walker <kevin@canyon23.net>
Mon, 31 May 2010 13:27:24 -0700
changeset 311 62d112a2df12
parent 310 ee7be19ee61a
child 312 5bb1cbe49c40
permissions -rw-r--r--
mention some other flavors of balls
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
     4
\def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
     6
\section{Definitions of $n$-categories}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
\label{sec:ncats}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
     9
\subsection{Definition of $n$-categories}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
    10
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    11
Before proceeding, we need more appropriate definitions of $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
$A_\infty$ $n$-categories, modules for these, and tensor products of these modules.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    13
(As is the case throughout this paper, by ``$n$-category" we implicitly intend some notion of
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    14
a `weak' $n$-category with `strong duality'.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    15
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    16
The definitions presented below tie the categories more closely to the topology
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    17
and avoid combinatorial questions about, for example, the minimal sufficient
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    18
collections of generalized associativity axioms; we prefer maximal sets of axioms to minimal sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    19
For examples of topological origin, it is typically easy to show that they
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    20
satisfy our axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    21
For examples of a more purely algebraic origin, one would typically need the combinatorial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    22
results that we have avoided here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    23
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    24
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    25
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    26
There are many existing definitions of $n$-categories, with various intended uses. In any such definition, there are sets of $k$-morphisms for each $0 \leq k \leq n$. Generally, these sets are indexed by instances of a certain typical chape. 
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    27
Some $n$-category definitions model $k$-morphisms on the standard bihedrons (interval, bigon, and so on).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    28
Other definitions have a separate set of 1-morphisms for each interval $[0,l] \sub \r$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    29
a separate set of 2-morphisms for each rectangle $[0,l_1]\times [0,l_2] \sub \r^2$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    30
and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    31
(This allows for strict associativity.)
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    32
Still other definitions (see, for example, \cite{MR2094071})
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    33
model the $k$-morphisms on more complicated combinatorial polyhedra.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    34
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    35
For our definition, we will allow our $k$-morphisms to have any shape, so long as it is homeomorphic to the standard $k$-ball:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    36
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
    37
\begin{axiom}[Morphisms]{\textup{\textbf{[preliminary]}}}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    38
For any $k$-manifold $X$ homeomorphic 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    39
to the standard $k$-ball, we have a set of $k$-morphisms
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    40
$\cC_k(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
    41
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    42
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    43
By ``a $k$-ball" we mean any $k$-manifold which is homeomorphic to the 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    44
standard $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    45
We {\it do not} assume that it is equipped with a 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    46
preferred homeomorphism to the standard $k$-ball, and the same applies to ``a $k$-sphere" below.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    47
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    48
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    49
Given a homeomorphism $f:X\to Y$ between $k$-balls (not necessarily fixed on 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    50
the boundary), we want a corresponding
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    51
bijection of sets $f:\cC(X)\to \cC(Y)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    52
(This will imply ``strong duality", among other things.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    53
So we replace the above with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    54
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
    55
\addtocounter{axiom}{-1}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    56
\begin{axiom}[Morphisms]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    57
\label{axiom:morphisms}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    58
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    59
the category of $k$-balls and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    60
homeomorphisms to the category of sets and bijections.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    61
\end{axiom}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    62
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    63
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    64
(Note: We usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    65
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    66
We are so far  being deliberately vague about what flavor of $k$-balls
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    67
we are considering.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
They could be unoriented or oriented or Spin or $\mbox{Pin}_\pm$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    69
They could be topological or PL or smooth.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    70
%\nn{need to check whether this makes much difference}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    71
(If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
to be fussier about corners.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    73
For each flavor of manifold there is a corresponding flavor of $n$-category.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    74
We will concentrate on the case of PL unoriented manifolds.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    75
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    76
(The ambitious reader may want to keep in mind two other classes of balls.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    77
The first is balls equipped with a map to some other space $Y$.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    78
This will be used below to describe the blob complex of a fiber bundle with
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    79
base space $Y$.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    80
The second is balls equipped with a section of the the tangent bundle, or the frame
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    81
bundle (i.e.\ framed balls), or more generally some flag bundle associated to the tangent bundle.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    82
These can be used to define categories with less than the ``strong" duality we assume here,
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    83
though we will not develop that idea fully in this paper.)
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    84
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    85
Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    86
of morphisms).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    87
The 0-sphere is unusual among spheres in that it is disconnected.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    88
Correspondingly, for 1-morphisms it makes sense to distinguish between domain and range.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    89
(Actually, this is only true in the oriented case, with 1-morphsims parameterized
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    90
by oriented 1-balls.)
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
    91
For $k>1$ and in the presence of strong duality the division into domain and range makes less sense. For example, in a pivotal tensor category, there are natural isomorphisms $\Hom{}{A}{B \tensor C} \isoto \Hom{}{B^* \tensor A}{C}$, etc. (sometimes called ``Frobenius reciprocity''), which canonically identify all the morphism spaces which have the same boundary. We prefer to not make the distinction in the first place.
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    92
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    93
Instead, we will combine the domain and range into a single entity which we call the 
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    94
boundary of a morphism.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    95
Morphisms are modeled on balls, so their boundaries are modeled on spheres.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    96
In other words, we need to extend the functors $\cC_{k-1}$ from balls to spheres, for 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    97
$1\le k \le n$.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    98
At first might seem that we need another axiom for this, but in fact once we have
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    99
all the axioms in the subsection for $0$ through $k-1$ we can use a coend
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   100
construction, as described in Subsection \ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   101
to spheres (and any other manifolds):
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   102
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   103
\begin{prop}
303
2252c53bd449 minor changes in a few places
Scott Morrison <scott@tqft.net>
parents: 291
diff changeset
   104
\label{axiom:spheres}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   105
For each $1 \le k \le n$, we have a functor $\cC_{k-1}$ from 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   106
the category of $k{-}1$-spheres and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   107
homeomorphisms to the category of sets and bijections.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   108
\end{prop}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   109
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   110
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   111
%In fact, the functors for spheres are entirely determined by the functors for balls and the subsequent axioms. (In particular, $\cC(S^k)$ is the colimit of $\cC$ applied to decompositions of $S^k$ into balls.) However, it is easiest to think of it as additional data at this point.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   112
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   113
\begin{axiom}[Boundaries]\label{nca-boundary}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   114
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cC_{k-1}(\bd X)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   115
These maps, for various $X$, comprise a natural transformation of functors.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   116
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   117
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   118
(Note that the first ``$\bd$" above is part of the data for the category, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   119
while the second is the ordinary boundary of manifolds.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   120
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   121
Given $c\in\cC(\bd(X))$, we will write $\cC(X; c)$ for $\bd^{-1}(c)$, those morphisms with specified boundary $c$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   123
Most of the examples of $n$-categories we are interested in are enriched in the following sense.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   124
The various sets of $n$-morphisms $\cC(X; c)$, for all $n$-balls $X$ and
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   125
all $c\in \cC(\bd X)$, have the structure of an object in some auxiliary category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
(e.g.\ vector spaces, or modules over some ring, or chain complexes),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   127
and all the structure maps of the $n$-category should be compatible with the auxiliary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   128
category structure.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   129
Note that this auxiliary structure is only in dimension $n$;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   130
$\cC(Y; c)$ is just a plain set if $\dim(Y) < n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   132
\medskip
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   133
\nn{
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   134
%At the moment I'm a little confused about orientations, and more specifically
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   135
%about the role of orientation-reversing maps of boundaries when gluing oriented manifolds.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   136
Maybe need a discussion about what the boundary of a manifold with a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   137
structure (e.g. orientation) means.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   138
Tentatively, I think we need to redefine the oriented boundary of an oriented $n$-manifold.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   139
Instead of an ordinary oriented $(n-1)$-manifold via the inward (or outward) normal 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   140
first (or last) convention, perhaps it is better to define the boundary to be an $(n-1)$-manifold
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   141
equipped with an orientation of its once-stabilized tangent bundle.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   142
Similarly, in dimension $n-k$ we would have manifolds equipped with an orientation of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   143
their $k$ times stabilized tangent bundles.
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
   144
(cf. [Stolz and Teichner].)
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   145
Probably should also have a framing of the stabilized dimensions in order to indicate which 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   146
side the bounded manifold is on.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   147
For the moment just stick with unoriented manifolds.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   148
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   149
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   150
We have just argued that the boundary of a morphism has no preferred splitting into
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   151
domain and range, but the converse meets with our approval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   152
That is, given compatible domain and range, we should be able to combine them into
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   153
the full boundary of a morphism.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   154
The following proposition follows from the coend construction used to define $\cC_{k-1}$
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   155
on spheres.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   156
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   157
\begin{prop}[Boundary from domain and range]
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   158
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   159
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
Let $\cC(B_1) \times_{\cC(E)} \cC(B_2)$ denote the fibered product of the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   161
two maps $\bd: \cC(B_i)\to \cC(E)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   162
Then we have an injective map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   163
\[
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   164
	\gl_E : \cC(B_1) \times_{\cC(E)} \cC(B_2) \into \cC(S)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   165
\]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   166
which is natural with respect to the actions of homeomorphisms.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   167
(When $k=1$ we stipulate that $\cC(E)$ is a point, so that the above fibered product
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   168
becomes a normal product.)
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   169
\end{prop}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   170
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   171
\begin{figure}[!ht]
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   172
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   173
\begin{tikzpicture}[%every label/.style={green}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   174
					]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   175
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   176
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   177
\draw (S) arc  (-90:90:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   178
\draw (N) arc  (90:270:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   179
\node[left] at (-1,1) {$B_1$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   180
\node[right] at (1,1) {$B_2$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   181
\end{tikzpicture}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   182
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   183
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   184
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   185
Note that we insist on injectivity above.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   186
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   187
Let $\cC(S)_E$ denote the image of $\gl_E$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   188
We will refer to elements of $\cC(S)_E$ as ``splittable along $E$" or ``transverse to $E$". 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   189
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   190
If $X$ is a $k$-ball and $E \sub \bd X$ splits $\bd X$ into two $k{-}1$-balls $B_1$ and $B_2$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   191
as above, then we define $\cC(X)_E = \bd^{-1}(\cC(\bd X)_E)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   192
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   193
We will call the projection $\cC(S)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   194
a {\it restriction} map and write $\res_{B_i}(a)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   195
(or simply $\res(a)$ when there is no ambiguity), for $a\in \cC(S)_E$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   196
More generally, we also include under the rubric ``restriction map" the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   197
the boundary maps of Axiom \ref{nca-boundary} above,
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   198
another class of maps introduced after Axiom \ref{nca-assoc} below, as well as any composition
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   199
of restriction maps.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   200
In particular, we have restriction maps $\cC(X)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   201
($i = 1, 2$, notation from previous paragraph).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   202
These restriction maps can be thought of as 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   203
domain and range maps, relative to the choice of splitting $\bd X = B_1 \cup_E B_2$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   206
Next we consider composition of morphisms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   207
For $n$-categories which lack strong duality, one usually considers
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   208
$k$ different types of composition of $k$-morphisms, each associated to a different direction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   209
(For example, vertical and horizontal composition of 2-morphisms.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   210
In the presence of strong duality, these $k$ distinct compositions are subsumed into 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   211
one general type of composition which can be in any ``direction".
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   212
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   213
\begin{axiom}[Composition]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   214
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   215
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   216
Let $E = \bd Y$, which is a $k{-}2$-sphere.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   218
We have restriction (domain or range) maps $\cC(B_i)_E \to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   219
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   220
We have a map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   221
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   222
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   223
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   224
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   225
to the intersection of the boundaries of $B$ and $B_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   226
If $k < n$ we require that $\gl_Y$ is injective.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   227
(For $k=n$, see below.)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   228
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   229
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   230
\begin{figure}[!ht]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   231
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   232
\begin{tikzpicture}[%every label/.style={green},
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   233
				x=1.5cm,y=1.5cm]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   234
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   235
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   236
\draw (S) arc  (-90:90:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   237
\draw (N) arc  (90:270:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   238
\draw (N) -- (S);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   239
\node[left] at (-1/4,1) {$B_1$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   240
\node[right] at (1/4,1) {$B_2$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   241
\node at (1/6,3/2)  {$Y$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   242
\end{tikzpicture}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   243
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   244
\caption{From two balls to one ball.}\label{blah5}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   245
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   246
\begin{axiom}[Strict associativity] \label{nca-assoc}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   247
The composition (gluing) maps above are strictly associative.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   248
\end{axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   249
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   250
\begin{figure}[!ht]
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   251
$$\mathfig{.65}{ncat/strict-associativity}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   252
\caption{An example of strict associativity.}\label{blah6}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   253
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   254
We'll use the notations  $a\bullet b$ as well as $a \cup b$ for the glued together field $\gl_Y(a, b)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   255
In the other direction, we will call the projection from $\cC(B)_E$ to $\cC(B_i)_E$ 
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   256
a restriction map (one of many types of map so called) and write $\res_{B_i}(a)$ for $a\in \cC(B)_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   257
%Compositions of boundary and restriction maps will also be called restriction maps.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   258
%For example, if $B$ is a $k$-ball and $Y\sub \bd B$ is a $k{-}1$-ball, there is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   259
%restriction map from $\cC(B)_{\bd Y}$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   260
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   261
We will write $\cC(B)_Y$ for the image of $\gl_Y$ in $\cC(B)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   262
We will call elements of $\cC(B)_Y$ morphisms which are `splittable along $Y$' or `transverse to $Y$'.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   263
We have $\cC(B)_Y \sub \cC(B)_E \sub \cC(B)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   264
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   265
More generally, let $\alpha$ be a subdivision of a ball $X$ into smaller balls.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   266
Let $\cC(X)_\alpha \sub \cC(X)$ denote the image of the iterated gluing maps from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   267
the smaller balls to $X$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   268
We  say that elements of $\cC(X)_\alpha$ are morphisms which are `splittable along $\alpha$'.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   269
In situations where the subdivision is notationally anonymous, we will write
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   270
$\cC(X)\spl$ for the morphisms which are splittable along (a.k.a.\ transverse to)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   271
the unnamed subdivision.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   272
If $\beta$ is a subdivision of $\bd X$, we define $\cC(X)_\beta \deq \bd\inv(\cC(\bd X)_\beta)$;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   273
this can also be denoted $\cC(X)\spl$ if the context contains an anonymous
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   274
subdivision of $\bd X$ and no competing subdivision of $X$.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   275
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   276
The above two composition axioms are equivalent to the following one,
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   277
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   278
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   279
\xxpar{Multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   280
{Given any decomposition $B = B_1\cup\cdots\cup B_m$ of a $k$-ball
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   281
into small $k$-balls, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   282
map from an appropriate subset (like a fibered product) 
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   283
of $\cC(B_1)\spl\times\cdots\times\cC(B_m)\spl$ to $\cC(B)\spl$,
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   284
and these various $m$-fold composition maps satisfy an
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   285
operad-type strict associativity condition (Figure \ref{blah7}).}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   286
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   287
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   288
$$\mathfig{.8}{tempkw/blah7}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   289
\caption{Operad composition and associativity}\label{blah7}\end{figure}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   290
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   291
The next axiom is related to identity morphisms, though that might not be immediately obvious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   292
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   293
\begin{axiom}[Product (identity) morphisms]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   294
For each $k$-ball $X$ and $m$-ball $D$, with $k+m \le n$, there is a map $\cC(X)\to \cC(X\times D)$, usually denoted $a\mapsto a\times D$ for $a\in \cC(X)$. These maps must satisfy the following conditions.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   295
\begin{enumerate}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   296
\item
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   297
If $f:X\to X'$ and $\tilde{f}:X\times D \to X'\times D'$ are maps such that the diagram
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   298
\[ \xymatrix{
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   299
	X\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & X'\times D' \ar[d]^{\pi} \\
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   300
	X \ar[r]^{f} & X'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   301
} \]
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   302
commutes, then we have 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   303
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   304
	\tilde{f}(a\times D) = f(a)\times D' .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   305
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   306
\item
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   307
Product morphisms are compatible with gluing (composition) in both factors:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   308
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   309
	(a'\times D)\bullet(a''\times D) = (a'\bullet a'')\times D
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   310
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   311
and
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   312
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   313
	(a\times D')\bullet(a\times D'') = a\times (D'\bullet D'') .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   314
\]
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   315
\nn{if pinched boundary, then remove first case above}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   316
\item
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   317
Product morphisms are associative:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   318
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   319
	(a\times D)\times D' = a\times (D\times D') .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   320
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   321
(Here we are implicitly using functoriality and the obvious homeomorphism
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   322
$(X\times D)\times D' \to X\times(D\times D')$.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   323
\item
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   324
Product morphisms are compatible with restriction:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   325
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   326
	\res_{X\times E}(a\times D) = a\times E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   327
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   328
for $E\sub \bd D$ and $a\in \cC(X)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   329
\end{enumerate}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   330
\end{axiom}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   331
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   332
\nn{need even more subaxioms for product morphisms?}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   333
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   334
\nn{Almost certainly we need a little more than the above axiom.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   335
More specifically, in order to bootstrap our way from the top dimension
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   336
properties of identity morphisms to low dimensions, we need regular products,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   337
pinched products and even half-pinched products.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   338
I'm not sure what the best way to cleanly axiomatize the properties of these various
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   339
products is.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   340
For the moment, I'll assume that all flavors of the product are at
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   341
our disposal, and I'll plan on revising the axioms later.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   342
128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   343
\nn{current idea for fixing this: make the above axiom a ``preliminary version"
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   344
(as we have already done with some of the other axioms), then state the official
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   345
axiom for maps $\pi: E \to X$ which are almost fiber bundles.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   346
one option is to restrict E to be a (full/half/not)-pinched product (up to homeo).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   347
the alternative is to give some sort of local criterion for what's allowed.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   348
state a gluing axiom for decomps $E = E'\cup E''$ where all three are of the correct type.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   349
}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   350
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   351
All of the axioms listed above hold for both ordinary $n$-categories and $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   352
The last axiom (below), concerning actions of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   353
homeomorphisms in the top dimension $n$, distinguishes the two cases.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   354
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   355
We start with the plain $n$-category case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   356
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   357
\begin{axiom}[Isotopy invariance in dimension $n$]{\textup{\textbf{[preliminary]}}}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   358
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   359
to the identity on $\bd X$ and is isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   360
Then $f$ acts trivially on $\cC(X)$; $f(a) = a$ for all $a\in \cC(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   361
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   362
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   363
This axiom needs to be strengthened to force product morphisms to act as the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   364
Let $X$ be an $n$-ball and $Y\sub\bd X$ be an $n{-}1$-ball.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   365
Let $J$ be a 1-ball (interval).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   366
We have a collaring homeomorphism $s_{Y,J}: X\cup_Y (Y\times J) \to X$.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   367
(Here we use the ``pinched" version of $Y\times J$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   368
\nn{need notation for this})
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   369
We define a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   370
\begin{eqnarray*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   371
	\psi_{Y,J}: \cC(X) &\to& \cC(X) \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   372
	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   373
\end{eqnarray*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   374
(See Figure \ref{glue-collar}.)
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   375
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   376
\begin{equation*}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   377
\begin{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   378
\def\rad{1}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   379
\def\srad{0.75}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   380
\def\gap{4.5}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   381
\foreach \i in {0, 1, 2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   382
	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   383
	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   384
	\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   385
		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   386
	}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   387
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   388
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   389
\begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   390
	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   391
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   392
\node[right=1mm] at (0.east) {$a$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   393
\draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   394
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   395
\draw (1-small)  circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   396
\foreach \theta in {90, 72, ..., -90} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   397
	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   398
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   399
\filldraw[fill=white] (1) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   400
\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   401
	\fill (intersection \n of 1-small and 1) circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   402
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   403
\node[below] at (1-small.south) {$a \times J$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   404
\draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   405
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   406
\begin{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   407
\path[clip] (2) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   408
\draw[clip] (2.east) circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   409
\foreach \y in {1, 0.86, ..., -1} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   410
	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   411
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   412
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   413
\end{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   414
\end{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   415
\begin{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   416
\xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   417
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   418
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   419
\caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   420
We say that $\psi_{Y,J}$ is {\it extended isotopic} to the identity map.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   421
\nn{bad terminology; fix it later}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   422
\nn{also need to make clear that plain old isotopic to the identity implies
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   423
extended isotopic}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   424
\nn{maybe remark that in some examples (e.g.\ ones based on sub cell complexes) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   425
extended isotopies are also plain isotopies, so
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   426
no extension necessary}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   427
It can be thought of as the action of the inverse of
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   428
a map which projects a collar neighborhood of $Y$ onto $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   429
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   430
The revised axiom is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   431
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   432
\addtocounter{axiom}{-1}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   433
\begin{axiom}{\textup{\textbf{[topological  version]}} Extended isotopy invariance in dimension $n$}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   434
\label{axiom:extended-isotopies}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   435
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   436
to the identity on $\bd X$ and is extended isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   437
Then $f$ acts trivially on $\cC(X)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   438
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   439
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   440
\nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   441
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   442
\smallskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   443
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   444
For $A_\infty$ $n$-categories, we replace
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   445
isotopy invariance with the requirement that families of homeomorphisms act.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   446
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   447
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   448
\addtocounter{axiom}{-1}
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   449
\begin{axiom}{\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   450
For each $n$-ball $X$ and each $c\in \cC(\bd X)$ we have a map of chain complexes
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   451
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   452
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   453
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   454
Here $C_*$ means singular chains and $\Homeo_\bd(X)$ is the space of homeomorphisms of $X$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   455
which fix $\bd X$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   456
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   457
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 225
diff changeset
   458
a diagram like the one in Proposition \ref{CHprop} commutes.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   459
\nn{repeat diagram here?}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   460
\nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   461
\end{axiom}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   462
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   463
We should strengthen the above axiom to apply to families of extended homeomorphisms.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   464
To do this we need to explain how extended homeomorphisms form a topological space.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   465
Roughly, the set of $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   466
and we can replace the class of all intervals $J$ with intervals contained in $\r$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   467
\nn{need to also say something about collaring homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   468
\nn{this paragraph needs work.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   469
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   470
Note that if we take homology of chain complexes, we turn an $A_\infty$ $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   471
into a plain $n$-category (enriched over graded groups).
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   472
\nn{say more here?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   473
In a different direction, if we enrich over topological spaces instead of chain complexes,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   474
we get a space version of an $A_\infty$ $n$-category, with $\Homeo_\bd(X)$ acting 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   475
instead of  $C_*(\Homeo_\bd(X))$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   476
Taking singular chains converts such a space type $A_\infty$ $n$-category into a chain complex
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   477
type $A_\infty$ $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   478
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   479
\medskip
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   480
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   481
The alert reader will have already noticed that our definition of (plain) $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   482
is extremely similar to our definition of topological fields.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   483
The main difference is that for the $n$-category definition we restrict our attention to balls
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   484
(and their boundaries), while for fields we consider all manifolds.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   485
(A minor difference is that in the category definition we directly impose isotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   486
invariance in dimension $n$, while in the fields definition we have non-isotopy-invariant fields
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   487
but then mod out by local relations which imply isotopy invariance.)
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   488
Thus a system of fields determines an $n$-category simply by restricting our attention to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   489
balls.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   490
This $n$-category can be thought of as the local part of the fields.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   491
Conversely, given an $n$-category we can construct a system of fields via 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   492
a colimit construction; see \S \ref{ss:ncat_fields} below.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   493
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   494
%\nn{Next, say something about $A_\infty$ $n$-categories and ``homological" systems
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   495
%of fields.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   496
%The universal (colimit) construction becomes our generalized definition of blob homology.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   497
%Need to explain how it relates to the old definition.}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   498
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   499
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   500
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   501
\subsection{Examples of $n$-categories}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   502
\label{ss:ncat-examples}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   503
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   504
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   505
We now describe several classes of examples of $n$-categories satisfying our axioms.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   506
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   507
\begin{example}[Maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   508
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   509
\label{ex:maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   510
Fix a `target space' $T$, any topological space. We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   511
For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   512
all continuous maps from $X$ to $T$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   513
For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   514
homotopies fixed on $\bd X$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   515
(Note that homotopy invariance implies isotopy invariance.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   516
For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   517
be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   518
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   519
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   520
\begin{example}[Maps to a space, with a fiber]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   521
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   522
\label{ex:maps-to-a-space-with-a-fiber}%
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   523
We can modify the example above, by fixing a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   524
closed $m$-manifold $F$, and defining $\pi^{\times F}_{\leq n}(T)(X) = \Maps(X \times F \to T)$, otherwise leaving the definition in Example \ref{ex:maps-to-a-space} unchanged. Taking $F$ to be a point recovers the previous case.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   525
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   526
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   527
\begin{example}[Linearized, twisted, maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   528
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   529
\label{ex:linearized-maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   530
We can linearize Examples \ref{ex:maps-to-a-space} and \ref{ex:maps-to-a-space-with-a-fiber} as follows.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   531
Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   532
(have in mind the trivial cocycle).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   533
For $X$ of dimension less than $n$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X)$ as before, ignoring $\alpha$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   534
For $X$ an $n$-ball and $c\in \Maps(\bdy X \times F \to T)$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X; c)$ to be
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   535
the $R$-module of finite linear combinations of continuous maps from $X\times F$ to $T$,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   536
modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   537
$h: X\times F\times I \to T$, then $a = \alpha(h)b$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   538
\nn{need to say something about fundamental classes, or choose $\alpha$ carefully}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   539
\end{example}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   540
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   541
The next example is only intended to be illustrative, as we don't specify which definition of a `traditional $n$-category' we intend. Further, most of these definitions don't even have an agreed-upon notion of `strong duality', which we assume here.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   542
\begin{example}[Traditional $n$-categories]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   543
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   544
\label{ex:traditional-n-categories}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   545
Given a `traditional $n$-category with strong duality' $C$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   546
define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   547
to be the set of all $C$-labeled sub cell complexes of $X$ (c.f. \S \ref{sec:fields}).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   548
For $X$ an $n$-ball and $c\in \cC(\bd X)$, define $\cC(X)$ to finite linear
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   549
combinations of $C$-labeled sub cell complexes of $X$
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   550
modulo the kernel of the evaluation map.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   551
Define a product morphism $a\times D$, for $D$ an $m$-ball, to be the product of the cell complex of $a$ with $D$,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   552
with each cell labelled by the $m$-th iterated identity morphism of the corresponding cell for $a$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   553
More generally, start with an $n{+}m$-category $C$ and a closed $m$-manifold $F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   554
Define $\cC(X)$, for $\dim(X) < n$,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   555
to be the set of all $C$-labeled sub cell complexes of $X\times F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   556
Define $\cC(X; c)$, for $X$ an $n$-ball,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   557
to be the dual Hilbert space $A(X\times F; c)$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   558
\nn{refer elsewhere for details?}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   559
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   560
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   561
Finally, we describe a version of the bordism $n$-category suitable to our definitions.
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   562
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   563
\nn{should also include example of ncats coming from TQFTs, or refer ahead to where we discuss that example}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   564
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   565
\newcommand{\Bord}{\operatorname{Bord}}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   566
\begin{example}[The bordism $n$-category, plain version]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   567
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   568
\label{ex:bordism-category}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   569
For a $k$-ball $X$, $k<n$, define $\Bord^n(X)$ to be the set of all $k$-dimensional
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   570
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   571
to $\bd X$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   572
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes (rel boundary) of such $n$-dimensional submanifolds;
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   573
we identify $W$ and $W'$ if $\bd W = \bd W'$ and there is a homeomorphism
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   574
$W \to W'$ which restricts to the identity on the boundary.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   575
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   576
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   577
%\nn{the next example might be an unnecessary distraction.  consider deleting it.}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   578
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   579
%\begin{example}[Variation on the above examples]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   580
%We could allow $F$ to have boundary and specify boundary conditions on $X\times \bd F$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   581
%for example product boundary conditions or take the union over all boundary conditions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   582
%%\nn{maybe should not emphasize this case, since it's ``better" in some sense
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   583
%%to think of these guys as affording a representation
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   584
%%of the $n{+}1$-category associated to $\bd F$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   585
%\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   586
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   587
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   588
%We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   589
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   590
\begin{example}[Chains of maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   591
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   592
\label{ex:chains-of-maps-to-a-space}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   593
We can modify Example \ref{ex:maps-to-a-space} above to define the fundamental $A_\infty$ $n$-category $\pi^\infty_{\le n}(T)$ of a topological space $T$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   594
For a $k$-ball $X$, with $k < n$, the set $\pi^\infty_{\leq n}(T)(X)$ is just $\Maps(X \to T)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   595
Define $\pi^\infty_{\leq n}(T)(X; c)$ for an $n$-ball $X$ and $c \in \pi^\infty_{\leq n}(T)(\bdy X)$ to be the chain complex
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   596
$$C_*(\Maps_c(X\times F \to T)),$$ where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   597
and $C_*$ denotes singular chains.
211
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 209
diff changeset
   598
\nn{maybe should also mention version where we enrich over spaces rather than chain complexes}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   599
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   600
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   601
See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   602
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   603
\begin{example}[Blob complexes of balls (with a fiber)]
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   604
\rm
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   605
\label{ex:blob-complexes-of-balls}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   606
Fix an $n-k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   607
We will define an $A_\infty$ $k$-category $\cC$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   608
When $X$ is a $m$-ball, with $m<k$, define $\cC(X) = \cE(X\times F)$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   609
When $X$ is an $k$-ball,
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   610
define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   611
where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   612
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   613
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   614
This example will be essential for Theorem \ref{product_thm} below, which allows us to compute the blob complex of a product. Notice that with $F$ a point, the above example is a construction turning a topological $n$-category into an $A_\infty$ $n$-category. We think of this as providing a `free resolution' of the topological $n$-category. \todo{Say more here!} In fact, there is also a trivial way to do this: we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, and take $\CD{B}$ to act trivially. 
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   615
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   616
Be careful that the `free resolution' of the topological $n$-category $\pi_{\leq n}(T)$ is not the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$. It's easy to see that with $n=0$, the corresponding system of fields is just linear combinations of connected components of $T$, and the local relations are trivial. There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   617
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   618
\begin{example}[The bordism $n$-category, $A_\infty$ version]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   619
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   620
\label{ex:bordism-category-ainf}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   621
blah blah \nn{to do...}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   622
\end{example}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   623
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   624
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   625
\begin{example}[$E_n$ algebras]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   626
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   627
\label{ex:e-n-alg}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   628
Let $\cE\cB_n$ be the operad of smooth embeddings of $k$ (little)
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   629
copies of the standard $n$-ball $B^n$ into another (big) copy of $B^n$.
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   630
$\cE\cB_n$ is homotopy equivalent to the standard framed little $n$-ball operad.
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   631
(By shrining the little balls, we see that both are homotopic to the space of $k$ framed points
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   632
in $B^n$.)
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   633
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   634
Let $A$ be an $\cE\cB_n$-algebra.
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   635
We will define an $A_\infty$ $n$-category $\cC^A$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   636
\nn{...}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   637
\end{example}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   638
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   639
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   640
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   641
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   642
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   643
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   644
%\subsection{From $n$-categories to systems of fields}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   645
\subsection{From balls to manifolds}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   646
\label{ss:ncat_fields} \label{ss:ncat-coend}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   647
In this section we describe how to extend an $n$-category as described above (of either the plain or $A_\infty$ variety) to a system of fields. 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   648
That is, we show that functors $\cC_k$ satisfying the axioms above have a canonical extension 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   649
from $k$-balls to arbitrary $k$-manifolds.
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   650
In the case of plain $n$-categories, this is just the usual construction of a TQFT
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   651
from an $n$-category.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   652
For $A_\infty$ $n$-categories, this gives an alternate (and
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   653
somewhat more canonical/tautological) construction of the blob complex.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   654
\nn{though from this point of view it seems more natural to just add some
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   655
adjective to ``TQFT" rather than coining a completely new term like ``blob complex".}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   656
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   657
We will first define the `cell-decomposition' poset $\cJ(W)$ for any $k$-manifold $W$, for $1 \leq k \leq n$. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   658
An $n$-category $\cC$ provides a functor from this poset to the category of sets, and we  will define $\cC(W)$ as a suitable colimit (or homotopy colimit in the $A_\infty$ case) of this functor. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   659
We'll later give a more explicit description of this colimit. In the case that the $n$-category $\cC$ is enriched (e.g. associates vector spaces or chain complexes to $n$-manifolds with boundary data), then the resulting system of fields is also enriched, that is, the set associated to $W$ splits into subsets according to boundary data, and each of these subsets has the appropriate structure (e.g. a vector space or chain complex).
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   660
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   661
\begin{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   662
Say that a `permissible decomposition' of $W$ is a cell decomposition
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   663
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   664
	W = \bigcup_a X_a ,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   665
\]
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   666
where each closed top-dimensional cell $X_a$ is an embedded $k$-ball.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   667
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   668
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   669
of $y$, or write $x \le y$, if each $k$-ball of $y$ is a union of $k$-balls of $x$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   670
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   671
The category $\cJ(W)$ has objects the permissible decompositions of $W$, and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   672
See Figure \ref{partofJfig} for an example.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   673
\end{defn}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   674
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   675
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   676
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   677
\mathfig{.63}{ncat/zz2}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   678
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   679
\caption{A small part of $\cJ(W)$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   680
\label{partofJfig}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   681
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   682
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   683
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   684
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   685
An $n$-category $\cC$ determines 
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   686
a functor $\psi_{\cC;W}$ from $\cJ(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   687
(possibly with additional structure if $k=n$).
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   688
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   689
and, as described above, we have a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   690
are splittable along this decomposition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   691
%For a $k$-cell $X$ in a cell composition of $W$, we can consider the `splittable fields' $\cC(X)_{\bdy X}$, the subset of $\cC(X)$ consisting of fields which are splittable with respect to each boundary $k-1$-cell.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   692
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   693
\begin{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   694
Define the functor $\psi_{\cC;W} : \cJ(W) \to \Set$ as follows.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   695
For a decomposition $x = \bigcup_a X_a$ in $\cJ(W)$, $\psi_{\cC;W}(x)$ is the subset
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   696
\begin{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   697
\label{eq:psi-C}
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   698
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   699
\end{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   700
where the restrictions to the various pieces of shared boundaries amongst the cells
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   701
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   702
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   703
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   704
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   705
When the $n$-category $\cC$ is enriched in some monoidal category $(A,\boxtimes)$, and $W$ is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   706
closed $n$-manifold, the functor $\psi_{\cC;W}$ has target $A$ and
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   707
we replace the cartesian product of sets appearing in Equation \eqref{eq:psi-C} with the monoidal product $\boxtimes$. (Moreover, $\psi_{\cC;W}(x)$ might be a subobject, rather than a subset, of the product.)
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   708
Similar things are true if $W$ is an $n$-manifold with non-empty boundary and we
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   709
fix a field on $\bd W$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   710
(i.e. fix an element of the colimit associated to $\bd W$).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   711
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   712
Finally, we construct $\cC(W)$ as the appropriate colimit of $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   713
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   714
\begin{defn}[System of fields functor]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   715
If $\cC$ is an $n$-category enriched in sets or vector spaces, $\cC(W)$ is the usual colimit of the functor $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   716
That is, for each decomposition $x$ there is a map
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   717
$\psi_{\cC;W}(x)\to \cC(W)$, these maps are compatible with the refinement maps
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   718
above, and $\cC(W)$ is universal with respect to these properties.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   719
\end{defn}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   720
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   721
\begin{defn}[System of fields functor, $A_\infty$ case]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   722
When $\cC$ is an $A_\infty$ $n$-category, $\cC(W)$ for $W$ a $k$-manifold with $k < n$ is defined as above, as the colimit of $\psi_{\cC;W}$. When $W$ is an $n$-manifold, the chain complex $\cC(W)$ is the homotopy colimit of the functor $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   723
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   724
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   725
We can specify boundary data $c \in \cC(\bdy W)$, and define functors $\psi_{\cC;W,c}$ with values the subsets of those of $\psi_{\cC;W}$ which agree with $c$ on the boundary of $W$.
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
   726
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   727
We now give a more concrete description of the colimit in each case. If $\cC$ is enriched over vector spaces, and $W$ is an $n$-manifold, we can take the vector space $\cC(W,c)$ to be the direct sum over all permissible decompositions of $W$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   728
\begin{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   729
	\cC(W,c) = \left( \bigoplus_x \psi_{\cC;W,c}(x)\right) \big/ K
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   730
\end{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   731
where $K$ is the vector space spanned by elements $a - g(a)$, with
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   732
$a\in \psi_{\cC;W,c}(x)$ for some decomposition $x$, and $g: \psi_{\cC;W,c}(x)
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   733
\to \psi_{\cC;W,c}(y)$ is value of $\psi_{\cC;W,c}$ on some antirefinement $x \leq y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   734
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   735
In the $A_\infty$ case, enriched over chain complexes, the concrete description of the homotopy colimit
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   736
is more involved.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   737
%\nn{should probably rewrite this to be compatible with some standard reference}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   738
Define an $m$-sequence in $W$ to be a sequence $x_0 \le x_1 \le \dots \le x_m$ of permissible decompositions of $W$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   739
Such sequences (for all $m$) form a simplicial set in $\cJ(W)$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   740
Define $V$ as a vector space via
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   741
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   742
	V = \bigoplus_{(x_i)} \psi_{\cC;W}(x_0)[m] ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   743
\]
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   744
where the sum is over all $m$-sequences $(x_i)$ and all $m$, and each summand is degree shifted by $m$. (Our homological conventions are non-standard: if a complex $U$ is concentrated in degree $0$, the complex $U[m]$ is concentrated in degree $m$.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   745
We endow $V$ with a differential which is the sum of the differential of the $\psi_{\cC;W}(x_0)$
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   746
summands plus another term using the differential of the simplicial set of $m$-sequences.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   747
More specifically, if $(a, \bar{x})$ denotes an element in the $\bar{x}$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   748
summand of $V$ (with $\bar{x} = (x_0,\dots,x_k)$), define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   749
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   750
	\bd (a, \bar{x}) = (\bd a, \bar{x}) + (-1)^{\deg{a}} (g(a), d_0(\bar{x})) + (-1)^{\deg{a}} \sum_{j=1}^k (-1)^{j} (a, d_j(\bar{x})) ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   751
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   752
where $d_j(\bar{x}) = (x_0,\dots,x_{j-1},x_{j+1},\dots,x_k)$ and $g: \psi_\cC(x_0)\to \psi_\cC(x_1)$
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   753
is the usual gluing map coming from the antirefinement $x_0 \le x_1$.
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   754
\nn{need to say this better}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   755
\nn{maybe mention that there is a version that emphasizes minimal gluings (antirefinements) which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   756
combine only two balls at a time; for $n=1$ this version will lead to usual definition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   757
of $A_\infty$ category}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   758
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   759
We will call $m$ the filtration degree of the complex.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   760
We can think of this construction as starting with a disjoint copy of a complex for each
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   761
permissible decomposition (filtration degree 0).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   762
Then we glue these together with mapping cylinders coming from gluing maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   763
(filtration degree 1).
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   764
Then we kill the extra homology we just introduced with mapping cylinders between the mapping cylinders (filtration degree 2), and so on.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   765
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   766
$\cC(W)$ is functorial with respect to homeomorphisms of $k$-manifolds.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   767
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   768
It is easy to see that
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   769
there are well-defined maps $\cC(W)\to\cC(\bd W)$, and that these maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   770
comprise a natural transformation of functors.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   771
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   772
\nn{need to finish explaining why we have a system of fields;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   773
need to say more about ``homological" fields? 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   774
(actions of homeomorphisms);
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   775
define $k$-cat $\cC(\cdot\times W)$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   776
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   777
\nn{need to revise stuff below, since we no longer have the sphere axiom}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   778
303
2252c53bd449 minor changes in a few places
Scott Morrison <scott@tqft.net>
parents: 291
diff changeset
   779
Recall that Axiom \ref{axiom:spheres} for an $n$-category provided functors $\cC$ from $k$-spheres to sets for $0 \leq k < n$. We claim now that these functors automatically agree with the colimits we have associated to spheres in this section. \todo{} \todo{In fact, we probably should do this for balls as well!} For the remainder of this section we will write $\underrightarrow{\cC}(W)$ for the colimit associated to an arbitary manifold $W$, to distinguish it, in the case that $W$ is a ball or a sphere, from $\cC(W)$, which is part of the definition of the $n$-category. After the next three lemmas, there will be no further need for this notational distinction.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   780
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   781
\begin{lem}
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   782
For a $k$-ball or $k$-sphere $W$, with $0\leq k < n$, $$\underrightarrow{\cC}(W) = \cC(W).$$
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   783
\end{lem}
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   784
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   785
\begin{lem}
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   786
For a topological $n$-category $\cC$, and an $n$-ball $B$, $$\underrightarrow{\cC}(B) = \cC(B).$$
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   787
\end{lem}
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   788
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   789
\begin{lem}
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   790
For an $A_\infty$ $n$-category $\cC$, and an $n$-ball $B$, $$\underrightarrow{\cC}(B) \quism \cC(B).$$
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   791
\end{lem}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   792
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   793
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   794
\subsection{Modules}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   795
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
   796
Next we define plain and $A_\infty$ $n$-category modules.
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   797
The definition will be very similar to that of $n$-categories,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   798
but with $k$-balls replaced by {\it marked $k$-balls,} defined below.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   799
\nn{** need to make sure all revisions of $n$-cat def are also made to module def.}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   800
\nn{in particular, need to to get rid of the ``hemisphere axiom"}
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   801
%\nn{should they be called $n$-modules instead of just modules?  probably not, but worth considering.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   802
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   803
Our motivating example comes from an $(m{-}n{+}1)$-dimensional manifold $W$ with boundary
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   804
in the context of an $m{+}1$-dimensional TQFT.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   805
Such a $W$ gives rise to a module for the $n$-category associated to $\bd W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   806
This will be explained in more detail as we present the axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   807
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
   808
\nn{should also develop $\pi_{\le n}(T, S)$ as a module for $\pi_{\le n}(T)$, where $S\sub T$.}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
   809
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   810
Throughout, we fix an $n$-category $\cC$. For all but one axiom, it doesn't matter whether $\cC$ is a topological $n$-category or an $A_\infty$ $n$-category. We state the final axiom, on actions of homeomorphisms, differently in the two cases.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   811
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   812
Define a {\it marked $k$-ball} to be a pair $(B, N)$ homeomorphic to the pair
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   813
$$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   814
We call $B$ the ball and $N$ the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   815
A homeomorphism between marked $k$-balls is a homeomorphism of balls which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   816
restricts to a homeomorphism of markings.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   817
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   818
\mmpar{Module axiom 1}{Module morphisms}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   819
{For each $0 \le k \le n$, we have a functor $\cM_k$ from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   820
the category of marked $k$-balls and 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   821
homeomorphisms to the category of sets and bijections.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   822
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   823
(As with $n$-categories, we will usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   824
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   825
For example, let $\cD$ be the $m{+}1$-dimensional TQFT which assigns to a $k$-manifold $N$ the set 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   826
of maps from $N$ to $T$, modulo homotopy (and possibly linearized) if $k=m$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   827
Let $W$ be an $(m{-}n{+}1)$-dimensional manifold with boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   828
Let $\cC$ be the $n$-category with $\cC(X) \deq \cD(X\times \bd W)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   829
Let $\cM(B, N) \deq \cD((B\times \bd W)\cup (N\times W))$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   830
(The union is along $N\times \bd W$.)
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   831
(If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   832
the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   833
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
   834
\begin{figure}[!ht]
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
   835
$$\mathfig{.8}{ncat/boundary-collar}$$
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
   836
\caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
   837
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   838
Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   839
Call such a thing a {marked $k{-}1$-hemisphere}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   840
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   841
\mmpar{Module axiom 2}{Module boundaries (hemispheres)}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   842
{For each $0 \le k \le n-1$, we have a functor $\cM_k$ from 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   843
the category of marked $k$-hemispheres and 
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   844
homeomorphisms to the category of sets and bijections.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   845
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   846
In our example, let $\cM(H) \deq \cD(H\times\bd W \cup \bd H\times W)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   847
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   848
\mmpar{Module axiom 3}{Module boundaries (maps)}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   849
{For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cM(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   850
These maps, for various $M$, comprise a natural transformation of functors.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   851
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   852
Given $c\in\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   853
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   854
If the $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   855
then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   856
and $c\in \cC(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   857
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   858
\mmpar{Module axiom 4}{Boundary from domain and range}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   859
{Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k$-hemisphere ($0\le k\le n-1$),
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   860
$M_i$ is a marked $k$-ball, and $E = M_1\cap M_2$ is a marked $k{-}1$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   861
Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   862
two maps $\bd: \cM(M_i)\to \cM(E)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   863
Then (axiom) we have an injective map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   864
\[
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   865
	\gl_E : \cM(M_1) \times_{\cM(E)} \cM(M_2) \hookrightarrow \cM(H)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   866
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   867
which is natural with respect to the actions of homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   868
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   869
Let $\cM(H)_E$ denote the image of $\gl_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   870
We will refer to elements of $\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   871
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   872
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   873
\mmpar{Module axiom 5}{Module to category restrictions}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   874
{For each marked $k$-hemisphere $H$ there is a restriction map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   875
$\cM(H)\to \cC(H)$.  
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   876
($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   877
These maps comprise a natural transformation of functors.}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   878
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   879
Note that combining the various boundary and restriction maps above
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   880
(for both modules and $n$-categories)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   881
we have for each marked $k$-ball $(B, N)$ and each $k{-}1$-ball $Y\sub \bd B \setmin N$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   882
a natural map from a subset of $\cM(B, N)$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   883
The subset is the subset of morphisms which are appropriately splittable (transverse to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   884
cutting submanifolds).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   885
This fact will be used below.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   886
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   887
In our example, the various restriction and gluing maps above come from
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   888
restricting and gluing maps into $T$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   889
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   890
We require two sorts of composition (gluing) for modules, corresponding to two ways
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   891
of splitting a marked $k$-ball into two (marked or plain) $k$-balls.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   892
(See Figure \ref{zzz3}.)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   893
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   894
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   895
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   896
\mathfig{.4}{ncat/zz3}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   897
\end{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   898
\caption{Module composition (top); $n$-category action (bottom).}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   899
\label{zzz3}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   900
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   901
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   902
First, we can compose two module morphisms to get another module morphism.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   903
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   904
\mmpar{Module axiom 6}{Module composition}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   905
{Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   906
and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   907
Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   908
Note that each of $M$, $M_1$ and $M_2$ has its boundary split into two marked $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   909
We have restriction (domain or range) maps $\cM(M_i)_E \to \cM(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   910
Let $\cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   911
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   912
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   913
	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   914
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   915
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   916
to the intersection of the boundaries of $M$ and $M_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   917
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   918
(For $k=n$, see below.)}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   919
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   920
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   921
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   922
Second, we can compose an $n$-category morphism with a module morphism to get another
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   923
module morphism.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   924
We'll call this the action map to distinguish it from the other kind of composition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   925
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   926
\mmpar{Module axiom 7}{$n$-category action}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   927
{Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   928
$X$ is a plain $k$-ball,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   929
and $Y = X\cap M'$ is a $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   930
Let $E = \bd Y$, which is a $k{-}2$-sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   931
We have restriction maps $\cM(M')_E \to \cC(Y)$ and $\cC(X)_E\to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   932
Let $\cC(X)_E \times_{\cC(Y)} \cM(M')_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   933
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   934
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   935
	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   936
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   937
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   938
to the intersection of the boundaries of $X$ and $M'$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   939
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   940
(For $k=n$, see below.)}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   941
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   942
\mmpar{Module axiom 8}{Strict associativity}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   943
{The composition and action maps above are strictly associative.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   944
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   945
Note that the above associativity axiom applies to mixtures of module composition,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   946
action maps and $n$-category composition.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   947
See Figure \ref{zzz1b}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   948
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   949
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   950
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   951
\mathfig{0.49}{ncat/zz0} \mathfig{0.49}{ncat/zz1}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   952
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   953
\caption{Two examples of mixed associativity}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   954
\label{zzz1b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   955
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   956
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   957
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   958
The above three axioms are equivalent to the following axiom,
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   959
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   960
\nn{need figure for this}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   961
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   962
\xxpar{Module multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   963
{Given any decomposition 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   964
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   965
	M =  X_1 \cup\cdots\cup X_p \cup M_1\cup\cdots\cup M_q
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   966
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   967
of a marked $k$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   968
into small (marked and plain) $k$-balls $M_i$ and $X_j$, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   969
map from an appropriate subset (like a fibered product) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   970
of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   971
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   972
	\cC(X_1)\times\cdots\times\cC(X_p) \times \cM(M_1)\times\cdots\times\cM(M_q) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   973
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   974
to $\cM(M)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   975
and these various multifold composition maps satisfy an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   976
operad-type strict associativity condition.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   977
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   978
(The above operad-like structure is analogous to the swiss cheese operad
146
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 145
diff changeset
   979
\cite{MR1718089}.)
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   980
%\nn{need to double-check that this is true.}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   981
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   982
\mmpar{Module axiom 9}{Product/identity morphisms}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   983
{Let $M$ be a marked $k$-ball and $D$ be a plain $m$-ball, with $k+m \le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   984
Then we have a map $\cM(M)\to \cM(M\times D)$, usually denoted $a\mapsto a\times D$ for $a\in \cM(M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   985
If $f:M\to M'$ and $\tilde{f}:M\times D \to M'\times D'$ are maps such that the diagram
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   986
\[ \xymatrix{
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   987
	M\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & M'\times D' \ar[d]^{\pi} \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   988
	M \ar[r]^{f} & M'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   989
} \]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   990
commutes, then we have $\tilde{f}(a\times D) = f(a)\times D'$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   991
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
   992
\nn{Need to add compatibility with various things, as in the n-cat version of this axiom above.}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   993
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   994
\nn{postpone finalizing the above axiom until the n-cat version is finalized}
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   995
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   996
There are two alternatives for the next axiom, according whether we are defining
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   997
modules for plain $n$-categories or $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   998
In the plain case we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   999
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1000
\mmpar{Module axiom 10a}{Extended isotopy invariance in dimension $n$}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1001
{Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts
175
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 174
diff changeset
  1002
to the identity on $\bd M$ and is extended isotopic (rel boundary) to the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1003
Then $f$ acts trivially on $\cM(M)$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1004
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1005
\nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1006
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1007
We emphasize that the $\bd M$ above means boundary in the marked $k$-ball sense.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1008
In other words, if $M = (B, N)$ then we require only that isotopies are fixed 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1009
on $\bd B \setmin N$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1010
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1011
For $A_\infty$ modules we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1012
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1013
\mmpar{Module axiom 10b}{Families of homeomorphisms act}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1014
{For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1015
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1016
	C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1017
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1018
Here $C_*$ means singular chains and $\Homeo_\bd(M)$ is the space of homeomorphisms of $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1019
which fix $\bd M$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1020
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1021
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 225
diff changeset
  1022
a diagram like the one in Proposition \ref{CHprop} commutes.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1023
\nn{repeat diagram here?}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1024
\nn{restate this with $\Homeo(M\to M')$?  what about boundary fixing property?}}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1025
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1026
\medskip
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1027
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1028
Note that the above axioms imply that an $n$-category module has the structure
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1029
of an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1030
More specifically, let $J$ be a marked 1-ball, and define $\cE(X)\deq \cM(X\times J)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1031
where $X$ is a $k$-ball or $k{-}1$-sphere and in the product $X\times J$ we pinch 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1032
above the non-marked boundary component of $J$.
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1033
(More specifically, we collapse $X\times P$ to a single point, where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1034
$P$ is the non-marked boundary component of $J$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1035
\nn{give figure for this?}
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1036
Then $\cE$ has the structure of an $n{-}1$-category.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1037
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1038
All marked $k$-balls are homeomorphic, unless $k = 1$ and our manifolds
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1039
are oriented or Spin (but not unoriented or $\text{Pin}_\pm$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1040
In this case ($k=1$ and oriented or Spin), there are two types
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1041
of marked 1-balls, call them left-marked and right-marked,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1042
and hence there are two types of modules, call them right modules and left modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1043
In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1044
there is no left/right module distinction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1045
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1046
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1047
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1048
We now give some examples of modules over topological and $A_\infty$ $n$-categories.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1049
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1050
\begin{example}[Examples from TQFTs]
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1051
\todo{}
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1052
\end{example}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1053
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1054
\begin{example}
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1055
Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all such maps modulo homotopies fixed on $\bdy B \setminus N$. This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}. Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1056
\end{example}
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1057
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1058
\subsection{Modules as boundary labels}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1059
\label{moddecss}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1060
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1061
Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$. Let $W$ be a $k$-manifold ($k\le n$),
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1062
let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1063
and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1064
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1065
%Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1066
%and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1067
%component $\bd_i W$ of $W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1068
%(More generally, each $\cN_i$ could label some codimension zero submanifold of $\bd W$.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1069
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1070
We will define a set $\cC(W, \cN)$ using a colimit construction similar to the one appearing in \S \ref{ss:ncat_fields} above.
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1071
(If $k = n$ and our $n$-categories are enriched, then
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1072
$\cC(W, \cN)$ will have additional structure; see below.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1073
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1074
Define a permissible decomposition of $W$ to be a decomposition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1075
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1076
	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1077
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1078
where each $X_a$ is a plain $k$-ball (disjoint from $\bd W$) and
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1079
each $M_{ib}$ is a marked $k$-ball intersecting $\bd_i W$,
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1080
with $M_{ib}\cap Y_i$ being the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1081
(See Figure \ref{mblabel}.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1082
\begin{figure}[!ht]\begin{equation*}
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1083
\mathfig{.4}{ncat/mblabel}
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1084
\end{equation*}\caption{A permissible decomposition of a manifold
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1085
whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$. Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}\end{figure}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1086
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1087
of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1088
This defines a partial ordering $\cJ(W)$, which we will think of as a category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1089
(The objects of $\cJ(D)$ are permissible decompositions of $W$, and there is a unique
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1090
morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1091
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1092
The collection of modules $\cN$ determines 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1093
a functor $\psi_\cN$ from $\cJ(W)$ to the category of sets 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1094
(possibly with additional structure if $k=n$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1095
For a decomposition $x = (X_a, M_{ib})$ in $\cJ(W)$, define $\psi_\cN(x)$ to be the subset
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1096
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1097
	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1098
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1099
such that the restrictions to the various pieces of shared boundaries amongst the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1100
$X_a$ and $M_{ib}$ all agree.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1101
(That is, the fibered product over the boundary maps.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1102
If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1103
via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1104
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1105
We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1106
(As usual, if $k=n$ and we are in the $A_\infty$ case, then ``colimit" means
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1107
homotopy colimit.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1108
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1109
If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1110
$\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1111
$D\times Y_i \sub \bd(D\times W)$. It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1112
has the structure of an $n{-}k$-category, which we call $\cT(W, \cN)(D)$.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1114
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1117
We will use a simple special case of the above 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1118
construction to define tensor products 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1119
of modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1120
Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1121
(If $k=1$ and our manifolds are oriented, then one should be 
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1122
a left module and the other a right module.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1123
Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1124
Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1125
$n{-}1$-category $\cT(J, \{\cM_1, \cM_2\})$. This of course depends (functorially)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1126
on the choice of 1-ball $J$.
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1127
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1128
We will define a more general self tensor product (categorified coend) below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1129
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1130
%\nn{what about self tensor products /coends ?}
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1131
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1132
\nn{maybe ``tensor product" is not the best name?}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1133
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1134
%\nn{start with (less general) tensor products; maybe change this later}
106
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 105
diff changeset
  1135
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1136
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1137
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1138
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1139
\subsection{Morphisms of $A_\infty$ $1$-category modules}
288
6c1b3c954c7e more deligne.tex
Kevin Walker <kevin@canyon23.net>
parents: 286
diff changeset
  1140
\label{ss:module-morphisms}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1141
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1142
In order to state and prove our version of the higher dimensional Deligne conjecture
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1143
(Section \ref{sec:deligne}),
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1144
we need to define morphisms of $A_\infty$ $1$-category modules and establish
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1145
some of their elementary properties.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1146
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1147
To motivate the definitions which follow, consider algebras $A$ and $B$,  right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1148
\begin{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1149
	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1150
	f &\mapsto& [x \mapsto f(x\ot -)] \\
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
  1151
	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1152
\end{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1153
If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1154
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1155
	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1156
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1157
We will establish the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1158
and modules $\cM_\cC$ and $_\cC\cN$,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1159
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1160
	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1161
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1162
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1163
In the next few paragraphs we define the objects appearing in the above equation:
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1164
$\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1165
$\hom_\cC$.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1166
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1167
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1168
\def\olD{{\overline D}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1169
\def\cbar{{\bar c}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1170
In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1171
for general $n$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1172
For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1173
and their gluings (antirefinements).
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1174
(This tensor product depends functorially on the choice of $J$.)
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1175
To a subdivision $D$
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1176
\[
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1177
	J = I_1\cup \cdots\cup I_p
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1178
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1179
we associate the chain complex
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1180
\[
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1181
	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1182
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1183
To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1184
module actions of $\cC$ on $\cM$ and $\cN$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1185
The underlying graded vector space of the homotopy colimit is
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1186
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1187
	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1188
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1189
where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1190
runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1191
We will denote an element of the summand indexed by $\olD$ by
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1192
$\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1193
The boundary map is given by
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1194
\begin{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1195
	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1196
	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1197
	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1198
\end{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1199
where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1200
boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1201
and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1202
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1203
$(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1204
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1205
	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1206
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1207
where $(\psi(D_0)[l])^*$ denotes the linear dual.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1208
The boundary is given by
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1209
\begin{align}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1210
\label{eq:tensor-product-boundary}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1211
	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1212
						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1213
			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1214
\end{align}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1215
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1216
Next we define the dual module $(_\cC\cN)^*$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1217
This will depend on a choice of interval $J$, just as the tensor product did.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1218
Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1219
to chain complexes.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1220
Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1221
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1222
	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1223
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1224
where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1225
to the right-marked interval $J\setmin K$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1226
This extends to a functor from all left-marked intervals (not just those contained in $J$).
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1227
\nn{need to say more here; not obvious how homeomorphisms act}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1228
It's easy to verify the remaining module axioms.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1229
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1230
Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1231
as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1232
Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1233
Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1234
Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1235
Then for each such $\olD$ we have a degree $l$ map
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1236
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1237
	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1238
	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1239
\end{eqnarray*}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1240
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1241
We are almost ready to give the definition of morphisms between arbitrary modules
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1242
$\cX_\cC$ and $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1243
Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1244
To fix this, we define subdivisions as antirefinements of left-marked intervals.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1245
Subdivisions are just the obvious thing, but antirefinements are defined to mimic
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1246
the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1247
omitted.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1248
More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1249
gluing subintervals together and/or omitting some of the rightmost subintervals.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1250
(See Figure \ref{fig:lmar}.)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1251
\begin{figure}[t]\begin{equation*}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1252
\mathfig{.6}{tempkw/left-marked-antirefinements}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1253
\end{equation*}\caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1254
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1255
Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1256
The underlying vector space is 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1257
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1258
	\prod_l \prod_{\olD} \hom[l]\left(
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1259
				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1260
							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1261
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1262
where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1263
(but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1264
$\hom[l](- \to -)$ means graded linear maps of degree $l$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1265
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1266
\nn{small issue (pun intended): 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1267
the above is a vector space only if the class of subdivisions is a set, e.g. only if
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1268
all of our left-marked intervals are contained in some universal interval (like $J$ above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1269
perhaps we should give another version of the definition in terms of natural transformations of functors.}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1270
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1271
Abusing notation slightly, we will denote elements of the above space by $g$, with
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1272
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1273
	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1274
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1275
For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1276
which are dropped off the right side.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1277
(Either $\cbar'$ or $\cbar''$ might be empty.)
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1278
\nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1279
Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1280
we have
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1281
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1282
	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1283
	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1284
\end{eqnarray*}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1285
\nn{put in signs, rearrange terms to match order in previous formulas}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1286
Here $\gl$ denotes the module action in $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1287
This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1288
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1289
Note that if $\bd g = 0$, then each 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1290
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1291
	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1292
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1293
constitutes a null homotopy of
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1294
$g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1295
should be interpreted as above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1296
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1297
Define a {\it naive morphism} 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1298
\nn{should consider other names for this}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1299
of modules to be a collection of {\it chain} maps
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1300
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1301
	h_K : \cX(K)\to \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1302
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1303
for each left-marked interval $K$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1304
These are required to commute with gluing;
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1305
for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes:
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1306
\[ \xymatrix{
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1307
	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1308
							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1309
								\ar[d]^{\gl} \\
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1310
	\cX(K) \ar[r]^{h_{K}} & \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1311
} \]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1312
Given such an $h$ we can construct a non-naive morphism $g$, with $\bd g = 0$, as follows.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1313
Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1314
If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1315
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1316
	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1317
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1318
Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1319
If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1320
If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1321
that each $h_K$ is a chain map.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1322
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1323
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1324
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1325
Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1326
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1327
	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1328
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1329
\nn{this is fairly straightforward, but the details are messy enough that I'm inclined
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1330
to postpone writing it up, in the hopes that I'll think of a better way to organize things.}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1331
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1332
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1333
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1334
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1335
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1336
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1337
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1338
\nn{do we need to say anything about composing morphisms of modules?}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1339
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1340
\nn{should we define functors between $n$-cats in a similar way?}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1341
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1342
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1343
\nn{...}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1344
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1345
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1346
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1347
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1348
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1349
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1350
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1351
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1352
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1353
\subsection{The $n{+}1$-category of sphere modules}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 211
diff changeset
  1354
\label{ssec:spherecat}
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1355
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1356
In this subsection we define an $n{+}1$-category $\cS$ of ``sphere modules" 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1357
whose objects correspond to $n$-categories.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1358
When $n=2$
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1359
this is a version of the familiar algebras-bimodules-intertwiners 2-category.
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1360
(Terminology: It is clearly appropriate to call an $S^0$ module a bimodule,
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1361
but this is much less true for higher dimensional spheres, 
155
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 146
diff changeset
  1362
so we prefer the term ``sphere module" for the general case.)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1363
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1364
The $0$- through $n$-dimensional parts of $\cC$ are various sorts of modules, and we describe
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1365
these first.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1366
The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1367
(of garden-variety $1$-category modules associated to decorated $n$-balls).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1368
We will see below that in order for these $n{+}1$-morphisms to satisfy all of
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1369
the duality requirements of an $n{+}1$-category, we will have to assume
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1370
that our $n$-categories and modules have non-degenerate inner products.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1371
(In other words, we need to assume some extra duality on the $n$-categories and modules.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1372
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1373
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1374
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1375
Our first task is to define an $n$-category $m$-sphere module, for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1376
These will be defined in terms of certain classes of marked balls, very similarly
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1377
to the definition of $n$-category modules above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1378
(This, in turn, is very similar to our definition of $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1379
Because of this similarity, we only sketch the definitions below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1380
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1381
We start with 0-sphere modules, which also could reasonably be called (categorified) bimodules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1382
(For $n=1$ they are precisely bimodules in the usual, uncategorified sense.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1383
Define a 0-marked $k$-ball $(X, M)$, $1\le k \le n$, to be a pair homeomorphic to the standard
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1384
$(B^k, B^{k-1})$, where $B^{k-1}$ is properly embedded in $B^k$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1385
See Figure \ref{feb21a}.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1386
Another way to say this is that $(X, M)$ is homeomorphic to $B^{k-1}\times([-1,1], \{0\})$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1387
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1388
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1389
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1390
\mathfig{.85}{tempkw/feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1391
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1392
\caption{0-marked 1-ball and 0-marked 2-ball}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1393
\label{feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1394
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1395
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1396
0-marked balls can be cut into smaller balls in various ways.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1397
These smaller balls could be 0-marked or plain.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1398
We can also take the boundary of a 0-marked ball, which is 0-marked sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1399
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1400
Fix $n$-categories $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1401
These will label the two halves of a 0-marked $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1402
The 0-sphere module we define next will depend on $\cA$ and $\cB$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1403
(it's an $\cA$-$\cB$ bimodule), but we will suppress that from the notation.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1404
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1405
An $n$-category 0-sphere module $\cM$ is a collection of functors $\cM_k$ from the category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1406
of 0-marked $k$-balls, $1\le k \le n$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1407
(with the two halves labeled by $\cA$ and $\cB$) to the category of sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1408
If $k=n$ these sets should be enriched to the extent $\cA$ and $\cB$ are.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1409
Given a decomposition of a 0-marked $k$-ball $X$ into smaller balls $X_i$, we have
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1410
morphism sets $\cA_k(X_i)$ (if $X_i$ lies on the $\cA$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1411
or $\cB_k(X_i)$ (if $X_i$ lies on the $\cB$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1412
or $\cM_k(X_i)$ (if $X_i$ intersects the marking and is therefore a smaller 0-marked ball).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1413
Corresponding to this decomposition we have an action and/or composition map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1414
from the product of these various sets into $\cM(X)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1415
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1416
\medskip
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1417
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1418
Part of the structure of an $n$-category 0-sphere module is captured by saying it is
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1419
a collection $\cD^{ab}$ of $n{-}1$-categories, indexed by pairs $(a, b)$ of objects (0-morphisms)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1420
of $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1421
Let $J$ be some standard 0-marked 1-ball (i.e.\ an interval with a marked point in its interior).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1422
Given a $j$-ball $X$, $0\le j\le n-1$, we define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1423
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1424
	\cD(X) \deq \cM(X\times J) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1425
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1426
The product is pinched over the boundary of $J$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1427
$\cD$ breaks into ``blocks" according to the restrictions to the pinched points of $X\times J$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1428
(see Figure \ref{feb21b}).
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1429
These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$.
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1430
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1431
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1432
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1433
\mathfig{1}{tempkw/feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1434
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1435
\caption{The pinched product $X\times J$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1436
\label{feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1437
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1438
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1439
More generally, consider an interval with interior marked points, and with the complements
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1440
of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1441
by $\cA_i$-$\cA_{i+1}$ bimodules $\cM_i$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1442
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1443
To this data we can apply to coend construction as in Subsection \ref{moddecss} above
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1444
to obtain an $\cA_0$-$\cA_l$ bimodule and, forgetfully, an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1445
This amounts to a definition of taking tensor products of bimodules over $n$-categories.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1446
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1447
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1448
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1449
\mathfig{1}{tempkw/feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1450
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1451
\caption{Marked and labeled 1-manifolds}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1452
\label{feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1453
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1454
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1455
We could also similarly mark and label a circle, obtaining an $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1456
associated to the marked and labeled circle.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1457
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1458
If the circle is divided into two intervals, we can think of this $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1459
as the 2-ended tensor product of the two bimodules associated to the two intervals.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1460
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1461
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1462
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1463
Next we define $n$-category 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1464
These are just representations of (modules for) $n{-}1$-categories associated to marked and labeled 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1465
circles (1-spheres) which we just introduced.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1466
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1467
Equivalently, we can define 1-sphere modules in terms of 1-marked $k$-balls, $2\le k\le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1468
Fix a marked (and labeled) circle $S$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1469
Let $C(S)$ denote the cone of $S$, a marked 2-ball (Figure \ref{feb21d}).
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1470
\nn{I need to make up my mind whether marked things are always labeled too.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1471
For the time being, let's say they are.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1472
A 1-marked $k$-ball is anything homeomorphic to $B^j \times C(S)$, $0\le j\le n-2$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1473
where $B^j$ is the standard $j$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1474
1-marked $k$-balls can be decomposed in various ways into smaller balls, which are either 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1475
smaller 1-marked $k$-balls or the product of an unmarked ball with a marked interval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1476
We now proceed as in the above module definitions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1477
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1478
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1479
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1480
\mathfig{.4}{tempkw/feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1481
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1482
\caption{Cone on a marked circle}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1483
\label{feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1484
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1485
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1486
A $n$-category 1-sphere module is, among other things, an $n{-}2$-category $\cD$ with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1487
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1488
	\cD(X) \deq \cM(X\times C(S)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1489
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1490
The product is pinched over the boundary of $C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1491
$\cD$ breaks into ``blocks" according to the restriction to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1492
image of $\bd C(S) = S$ in $X\times C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1493
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1494
More generally, consider a 2-manifold $Y$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1495
(e.g.\ 2-ball or 2-sphere) marked by an embedded 1-complex $K$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1496
The components of $Y\setminus K$ are labeled by $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1497
the edges of $K$ are labeled by 0-sphere modules, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1498
and the 0-cells of $K$ are labeled by 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1499
We can now apply the coend construction and obtain an $n{-}2$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1500
If $Y$ has boundary then this $n{-}2$-category is a module for the $n{-}1$-manifold
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1501
associated to the (marked, labeled) boundary of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1502
In particular, if $\bd Y$ is a 1-sphere then we get a 1-sphere module as defined above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1503
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1504
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1505
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1506
It should now be clear how to define $n$-category $m$-sphere modules for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1507
For example, there is an $n{-}2$-category associated to a marked, labeled 2-sphere,
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1508
and a 2-sphere module is a representation of such an $n{-}2$-category.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1509
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1510
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1511
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1512
We can now define the $n$- or less dimensional part of our $n{+}1$-category $\cS$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1513
Choose some collection of $n$-categories, then choose some collections of bimodules for
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1514
these $n$-categories, then choose some collection of 1-sphere modules for the various
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1515
possible marked 1-spheres labeled by the $n$-categories and bimodules, and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1516
Let $L_i$ denote the collection of $i{-}1$-sphere modules we have chosen.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1517
(For convenience, we declare a $(-1)$-sphere module to be an $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1518
There is a wide range of possibilities.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1519
$L_0$ could contain infinitely many $n$-categories or just one.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1520
For each pair of $n$-categories in $L_0$, $L_1$ could contain no bimodules at all or 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1521
it could contain several.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1522
The only requirement is that each $k$-sphere module be a module for a $k$-sphere $n{-}k$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1523
constructed out of labels taken from $L_j$ for $j<k$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1524
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1525
We now define $\cS(X)$, for $X$ of dimension at most $n$, to be the set of all 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1526
cell-complexes $K$ embedded in $X$, with the codimension-$j$ parts of $(X, K)$ labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1527
by elements of $L_j$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1528
As described above, we can think of each decorated $k$-ball as defining a $k{-}1$-sphere module
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1529
for the $n{-}k{+}1$-category associated to its decorated boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1530
Thus the $k$-morphisms of $\cS$ (for $k\le n$) can be thought 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1531
of as $n$-category $k{-}1$-sphere modules 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1532
(generalizations of bimodules).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1533
On the other hand, we can equally think of the $k$-morphisms as decorations on $k$-balls, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1534
and from this (official) point of view it is clear that they satisfy all of the axioms of an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1535
$n{+}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1536
(All of the axioms for the less-than-$n{+}1$-dimensional part of an $n{+}1$-category, that is.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1537
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1538
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1539
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1540
Next we define the $n{+}1$-morphisms of $\cS$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1541
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1542
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1543
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1544
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1545
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1546
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1547
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1548
\nn{...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1549
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1550
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1551
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1552
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1553
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  1554
\nn{to be continued...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1555
\medskip
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1556
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1557
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1558
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1559
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1560
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1561
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1562
Stuff that remains to be done (either below or in an appendix or in a separate section or in
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1563
a separate paper):
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1564
\begin{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1565
\item spell out what difference (if any) Top vs PL vs Smooth makes
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1566
\item discuss Morita equivalence
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1567
\item morphisms of modules; show that it's adjoint to tensor product
139
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 134
diff changeset
  1568
(need to define dual module for this)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 134
diff changeset
  1569
\item functors
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1570
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1571
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  1572
\bigskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  1573
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  1574
\hrule
134
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1575
\nn{Some salvaged paragraphs that we might want to work back in:}
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  1576
\bigskip
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1577
134
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1578
Appendix \ref{sec:comparing-A-infty} explains the translation between this definition of an $A_\infty$ $1$-category and the usual one expressed in terms of `associativity up to higher homotopy', as in \cite{MR1854636}. (In this version of the paper, that appendix is incomplete, however.)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1579
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1580
The motivating example is `chains of maps to $M$' for some fixed target space $M$. This is a topological $A_\infty$ category $\Xi_M$ with $\Xi_M(J) = C_*(\Maps(J \to M))$. The gluing maps $\Xi_M(J) \tensor \Xi_M(J') \to \Xi_M(J \cup J')$  takes the product of singular chains, then glues maps to $M$ together; the associativity condition is automatically satisfied. The evaluation map $\ev_{J,J'} : \CD{J \to J'} \tensor \Xi_M(J) \to \Xi_M(J')$ is the composition
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1581
\begin{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1582
\CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1583
\end{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1584
where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1585
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 130
diff changeset
  1586
\hrule