text/hochschild.tex
author kevin@6e1638ff-ae45-0410-89bd-df963105f760
Thu, 11 Mar 2010 23:20:25 +0000
changeset 219 7e9a7b9605d3
parent 218 1acb5f508cf6
child 220 d31a9c505f29
permissions -rw-r--r--
...
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
46
0ffcbbd8019c minor cleanup of the start of the hochschild section
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 43
diff changeset
     1
%!TEX root = ../blob1.tex
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
     2
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 77
diff changeset
     3
\section{Hochschild homology when $n=1$}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 77
diff changeset
     4
\label{sec:hochschild}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 77
diff changeset
     5
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
     6
So far we have provided no evidence that blob homology is interesting in degrees 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
     7
greater than zero.
217
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 165
diff changeset
     8
In this section we analyze the blob complex in dimension $n=1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 165
diff changeset
     9
We find that $\bc_*(S^1, \cC)$ is homotopy equivalent to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 165
diff changeset
    10
Hochschild complex of the 1-category $\cC$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 165
diff changeset
    11
\nn{cat vs fields --- need to make sure this is clear}
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
    12
Thus the blob complex is a natural generalization of something already
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
    13
known to be interesting in higher homological degrees.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    14
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
    15
It is also worth noting that the original idea for the blob complex came from trying
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
    16
to find a more ``local" description of the Hochschild complex.
140
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 136
diff changeset
    17
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    18
Let $C$ be a *-1-category.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    19
Then specializing the definitions from above to the case $n=1$ we have:
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    20
\begin{itemize}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    21
\item $\cC(pt) = \ob(C)$ .
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    22
\item Let $R$ be a 1-manifold and $c \in \cC(\bd R)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    23
Then an element of $\cC(R; c)$ is a collection of (transversely oriented)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    24
points in the interior
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    25
of $R$, each labeled by a morphism of $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    26
The intervals between the points are labeled by objects of $C$, consistent with
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    27
the boundary condition $c$ and the domains and ranges of the point labels.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    28
\item There is an evaluation map $e: \cC(I; a, b) \to \mor(a, b)$ given by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    29
composing the morphism labels of the points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    30
Note that we also need the * of *-1-category here in order to make all the morphisms point
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    31
the same way.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    32
\item For $x \in \mor(a, b)$ let $\chi(x) \in \cC(I; a, b)$ be the field with a single
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    33
point (at some standard location) labeled by $x$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    34
Then the kernel of the evaluation map $U(I; a, b)$ is generated by things of the
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    35
form $y - \chi(e(y))$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    36
Thus we can, if we choose, restrict the blob twig labels to things of this form.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    37
\end{itemize}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    38
46
0ffcbbd8019c minor cleanup of the start of the hochschild section
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 43
diff changeset
    39
We want to show that $\bc_*(S^1)$ is homotopy equivalent to the
0ffcbbd8019c minor cleanup of the start of the hochschild section
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 43
diff changeset
    40
Hochschild complex of $C$.
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
    41
In order to prove this we will need to extend the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 140
diff changeset
    42
definition of the blob complex to allow points to also
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    43
be labeled by elements of $C$-$C$-bimodules.
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    44
(See Subsections \ref{moddecss} and \ref{ssec:spherecat} for a more general (i.e.\ $n>1$)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    45
version of this construction.)
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    46
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    47
Fix points $p_1, \ldots, p_k \in S^1$ and $C$-$C$-bimodules $M_1, \ldots M_k$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    48
We define a blob-like complex $K_*(S^1, (p_i), (M_i))$.
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    49
The fields have elements of $M_i$ labeling 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    50
the fixed points $p_i$ and elements of $C$ labeling other (variable) points.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    51
As before, the regions between the marked points are labeled by
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    52
objects of $\cC$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    53
The blob twig labels lie in kernels of evaluation maps.
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    54
(The range of these evaluation maps is a tensor product (over $C$) of $M_i$'s,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    55
corresponding to the $p_i$'s that lie within the twig blob.)
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    56
Let $K_*(M) = K_*(S^1, (*), (M))$, where $* \in S^1$ is some standard base point.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    57
In other words, fields for $K_*(M)$ have an element of $M$ at the fixed point $*$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    58
and elements of $C$ at variable other points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    59
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    60
In the theorems, propositions and lemmas below we make various claims
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    61
about complexes being homotopy equivalent.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    62
In all cases the complexes in question are free (and hence projective), 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    63
so it suffices to show that they are quasi-isomorphic.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    64
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    65
We claim that
48
b7ade62bea27 more commutative algebra stuff
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 46
diff changeset
    66
\begin{thm} \label{hochthm}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    67
The blob complex $\bc_*(S^1; C)$ on the circle is homotopy equivalent to the
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    68
usual Hochschild complex for $C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    69
\end{thm}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    70
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    71
This follows from two results. First, we see that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    72
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    73
\label{lem:module-blob}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    74
The complex $K_*(C)$ (here $C$ is being thought of as a
68
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
    75
$C$-$C$-bimodule, not a category) is homotopy equivalent to the blob complex
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    76
$\bc_*(S^1; C)$. (Proof later.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    77
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    78
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    79
Next, we show that for any $C$-$C$-bimodule $M$,
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
    80
\begin{prop} \label{prop:hoch}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
    81
The complex $K_*(M)$ is homotopy equivalent to $\HC_*(M)$, the usual
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    82
Hochschild complex of $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    83
\end{prop}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    84
\begin{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    85
Recall that the usual Hochschild complex of $M$ is uniquely determined,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    86
up to quasi-isomorphism, by the following properties:
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    87
\begin{enumerate}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    88
\item \label{item:hochschild-additive}%
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    89
$\HC_*(M_1 \oplus M_2) \cong \HC_*(M_1) \oplus \HC_*(M_2)$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    90
\item \label{item:hochschild-exact}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    91
An exact sequence $0 \to M_1 \into M_2 \onto M_3 \to 0$ gives rise to an
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    92
exact sequence $0 \to \HC_*(M_1) \into \HC_*(M_2) \onto \HC_*(M_3) \to 0$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    93
\item \label{item:hochschild-coinvariants}%
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    94
$\HH_0(M)$ is isomorphic to the coinvariants of $M$, $\coinv(M) =
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    95
M/\langle cm-mc \rangle$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
    96
\item \label{item:hochschild-free}%
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
    97
$\HC_*(C\otimes C)$ is contractible.
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
    98
(Here $C\otimes C$ denotes
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
    99
the free $C$-$C$-bimodule with one generator.)
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   100
That is, $\HC_*(C\otimes C)$ is
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
   101
quasi-isomorphic to its $0$-th homology (which in turn, by \ref{item:hochschild-coinvariants}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 217
diff changeset
   102
above, is just $C$) via the quotient map $\HC_0 \onto \HH_0$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   103
\end{enumerate}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   104
(Together, these just say that Hochschild homology is `the derived functor of coinvariants'.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   105
We'll first recall why these properties are characteristic.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   106
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   107
Take some $C$-$C$ bimodule $M$, and choose a free resolution
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   108
\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   109
\cdots \to F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   110
\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   111
We will show that for any functor $\cP$ satisfying properties
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   112
\ref{item:hochschild-additive}, \ref{item:hochschild-exact},
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   113
\ref{item:hochschild-coinvariants} and \ref{item:hochschild-free}, there
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   114
is a quasi-isomorphism
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   115
$$\cP_*(M) \iso \coinv(F_*).$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   116
%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   117
Observe that there's a quotient map $\pi: F_0 \onto M$, and by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   118
construction the cone of the chain map $\pi: F_* \to M$ is acyclic. Now
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   119
construct the total complex $\cP_i(F_j)$, with $i,j \geq 0$, graded by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   120
$i+j$. We have two chain maps
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   121
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   122
\cP_i(F_*) & \xrightarrow{\cP_i(\pi)} \cP_i(M) \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   123
\intertext{and}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   124
\cP_*(F_j) & \xrightarrow{\cP_0(F_j) \onto H_0(\cP_*(F_j))} \coinv(F_j).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   125
\end{align*}
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   126
The cone of each chain map is acyclic. In the first case, this is because the `rows' indexed by $i$ are acyclic since $\HC_i$ is exact.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   127
In the second case, this is because the `columns' indexed by $j$ are acyclic, since $F_j$ is free.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   128
Because the cones are acyclic, the chain maps are quasi-isomorphisms. Composing one with the inverse of the other, we obtain the desired quasi-isomorphism
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   129
$$\cP_*(M) \quismto \coinv(F_*).$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   130
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   131
%If $M$ is free, that is, a direct sum of copies of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   132
%$C \tensor C$, then properties \ref{item:hochschild-additive} and
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   133
%\ref{item:hochschild-free} determine $\HC_*(M)$. Otherwise, choose some
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   134
%free cover $F \onto M$, and define $K$ to be this map's kernel. Thus we
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   135
%have a short exact sequence $0 \to K \into F \onto M \to 0$, and hence a
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   136
%short exact sequence of complexes $0 \to \HC_*(K) \into \HC_*(F) \onto \HC_*(M)
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   137
%\to 0$. Such a sequence gives a long exact sequence on homology
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   138
%\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   139
%%\begin{split}
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   140
%\cdots \to \HH_{i+1}(F) \to \HH_{i+1}(M) \to \HH_i(K) \to \HH_i(F) \to \cdots % \\
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   141
%%\cdots \to \HH_1(F) \to \HH_1(M) \to \HH_0(K) \to \HH_0(F) \to \HH_0(M).
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   142
%%\end{split}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   143
%\end{equation*}
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   144
%For any $i \geq 1$, $\HH_{i+1}(F) = \HH_i(F) = 0$, by properties
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   145
%\ref{item:hochschild-additive} and \ref{item:hochschild-free}, and so
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   146
%$\HH_{i+1}(M) \iso \HH_i(F)$. For $i=0$, \todo{}.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   147
%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   148
%This tells us how to
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   149
%compute every homology group of $\HC_*(M)$; we already know $\HH_0(M)$
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   150
%(it's just coinvariants, by property \ref{item:hochschild-coinvariants}),
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   151
%and higher homology groups are determined by lower ones in $\HC_*(K)$, and
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   152
%hence recursively as coinvariants of some other bimodule.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   153
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   154
Proposition \ref{prop:hoch} then follows from the following lemmas, establishing that $K_*$ has precisely these required properties.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   155
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   156
\label{lem:hochschild-additive}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   157
Directly from the definition, $K_*(M_1 \oplus M_2) \cong K_*(M_1) \oplus K_*(M_2)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   158
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   159
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   160
\label{lem:hochschild-exact}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   161
An exact sequence $0 \to M_1 \into M_2 \onto M_3 \to 0$ gives rise to an
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   162
exact sequence $0 \to K_*(M_1) \into K_*(M_2) \onto K_*(M_3) \to 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   163
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   164
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   165
\label{lem:hochschild-coinvariants}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   166
$H_0(K_*(M))$ is isomorphic to the coinvariants of $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   167
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   168
\begin{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   169
\label{lem:hochschild-free}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   170
$K_*(C\otimes C)$ is quasi-isomorphic to $H_0(K_*(C \otimes C)) \iso C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   171
\end{lem}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   172
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   173
The remainder of this section is devoted to proving Lemmas
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   174
\ref{lem:module-blob},
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   175
\ref{lem:hochschild-exact}, \ref{lem:hochschild-coinvariants} and
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   176
\ref{lem:hochschild-free}.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   177
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   178
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   179
\begin{proof}[Proof of Lemma \ref{lem:module-blob}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   180
We show that $K_*(C)$ is quasi-isomorphic to $\bc_*(S^1)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   181
$K_*(C)$ differs from $\bc_*(S^1)$ only in that the base point *
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   182
is always a labeled point in $K_*(C)$, while in $\bc_*(S^1)$ it may or may not be.
46
0ffcbbd8019c minor cleanup of the start of the hochschild section
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 43
diff changeset
   183
In particular, there is an inclusion map $i: K_*(C) \to \bc_*(S^1)$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   184
219
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   185
We want to define a homotopy inverse to the above inclusion, but before doing so
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   186
we must replace $\bc_*(S^1)$ with a homotopy equivalent subcomplex.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   187
Let $J_* \sub \bc_*(S^1)$ be the subcomplex where * does not lie to the boundary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   188
of any blob.  Note that the image of $i$ is contained in $J_*$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   189
Note also that in $\bc_*(S^1)$ (away from $J_*$) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   190
a blob diagram could have multiple (nested) blobs whose
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   191
boundaries contain *, on both the right and left of *.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   193
We claim that $J_*$ is homotopy equivalent to $\bc_*(S^1)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   194
Let $F_*^\ep \sub \bc_*(S^1)$ be the subcomplex where there there are no labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   195
points within distance $\ep$ of * on the right.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   196
(This includes * itself.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   197
\nn{...}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   201
We want to define a homotopy inverse $s: \bc_*(S^1) \to K_*(C)$ to the inclusion.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   202
If $y$ is a field defined on a neighborhood of *, define $s(y) = y$ if
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   203
* is a labeled point in $y$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   204
Otherwise, define $s(y)$ to be the result of adding a label 1 (identity morphism) at *.
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   205
Extending linearly, we get the desired map $s: \bc_*(S^1) \to K_*(C)$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   206
It is easy to check that $s$ is a chain map and $s \circ i = \id$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   207
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   208
Let $N_\ep$ denote the ball of radius $\ep$ around *.
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   209
Let $L_*^\ep \sub \bc_*(S^1)$ be the subcomplex 
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   210
spanned by blob diagrams
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   211
where there are no labeled points
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   212
in $N_\ep$, except perhaps $*$, and $N_\ep$ is either disjoint from or contained in 
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   213
every blob in the diagram.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   214
Note that for any chain $x \in \bc_*(S^1)$, $x \in L_*^\ep$ for sufficiently small $\ep$.
68
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   215
\nn{what if * is on boundary of a blob?  need preliminary homotopy to prevent this.}
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   216
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   217
We define a degree $1$ chain map $j_\ep: L_*^\ep \to L_*^\ep$ as follows. Let $x \in L_*^\ep$ be a blob diagram.
68
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   218
\nn{maybe add figures illustrating $j_\ep$?}
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   219
If $*$ is not contained in any twig blob, we define $j_\ep(x)$ by adding $N_\ep$ as a new twig blob, with label $y - s(y)$ where $y$ is the restriction
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   220
of $x$ to $N_\ep$. If $*$ is contained in a twig blob $B$ with label $u=\sum z_i$,
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   221
write $y_i$ for the restriction of $z_i$ to $N_\ep$, and let
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   222
$x_i$ be equal to $x$ on $S^1 \setmin B$, equal to $z_i$ on $B \setmin N_\ep$,
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   223
and have an additional blob $N_\ep$ with label $y_i - s(y_i)$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   224
Define $j_\ep(x) = \sum x_i$.
68
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   225
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   226
It is not hard to show that on $L_*^\ep$
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   227
\[
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   228
	\bd j_\ep  + j_\ep \bd = \id - i \circ s .
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   229
\]
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   230
\nn{need to check signs coming from blob complex differential}
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   231
Since for $\ep$ small enough $L_*^\ep$ captures all of the
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   232
homology of $\bc_*(S^1)$, 
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   233
it follows that the mapping cone of $i \circ s$ is acyclic and therefore (using the fact that
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   234
these complexes are free) $i \circ s$ is homotopic to the identity.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   235
\end{proof}
68
4f2ea5eabc8f hochschild section edits
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 66
diff changeset
   236
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   237
\begin{proof}[Proof of Lemma \ref{lem:hochschild-exact}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   238
We now prove that $K_*$ is an exact functor.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   239
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   240
Essentially, this comes down to the unsurprising fact that the functor on $C$-$C$ bimodules
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   241
\begin{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   242
M \mapsto \ker(C \tensor M \tensor C \xrightarrow{c_1 \tensor m \tensor c_2 \mapsto c_1 m c_2} M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   243
\end{equation*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   244
is exact. For completeness we'll explain this below.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   245
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   246
Suppose we have a short exact sequence of $C$-$C$ bimodules $$\xymatrix{0 \ar[r] & K \ar@{^{(}->}[r]^f & E \ar@{->>}[r]^g & Q \ar[r] & 0}.$$
165
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   247
We'll write $\hat{f}$ and $\hat{g}$ for the image of $f$ and $g$ under the functor, so $\hat{f}(a \tensor k \tensor b) = a \tensor f(k) \tensor b$, and similarly for $\hat{g}$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   248
Most of what we need to check is easy.
165
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   249
Suppose we have $\sum_i (a_i \tensor k_i \tensor b_i) \in \ker(C \tensor K \tensor C \to K)$, assuming without loss of generality that $\{a_i \tensor b_i\}_i$ is linearly independent in $C \tensor C$, and $\hat{f}(a \tensor k \tensor b) = 0 \in \ker(C \tensor E \tensor C \to E)$. We must then have $f(k_i) = 0 \in E$ for each $i$, which implies $k_i=0$ itself. 
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   250
If $\sum_i (a \tensor e \tensor b) \in \ker(C \tensor E \tensor C \to E)$ is in the image of $\ker(C \tensor K \tensor C \to K)$ under $\hat{f}$, again by assuming the set  $\{a_i \tensor b_i\}_i$ is linearly independent we can deduce that each
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   251
$e_i$ is in the image of the original $f$, and so is in the kernel of the original $g$, and so $\hat{g}(\sum_i a_i \tensor e_i \tensor b_i) = 0$.
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   252
If $\hat{g}(\sum_i a_i \tensor e_i \tensor b_i) = 0$, then each $g(e_i) = 0$, so $e_i = f(\widetilde{e_i})$ for some $\widetilde{e_i} \in K$, and $\sum_i a_i \tensor e_i \tensor b_i = \hat{f}(\sum_i a_i \tensor \widetilde{e_i} \tensor b_i)$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   253
Finally, the interesting step is in checking that any $q = \sum_i a_i \tensor q_i \tensor b_i$ such that $\sum_i a_i q_i b_i = 0$ is in the image of $\ker(C \tensor E \tensor C \to C)$ under $\hat{g}$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   254
For each $i$, we can find $\widetilde{q_i}$ so $g(\widetilde{q_i}) = q_i$. However $\sum_i a_i \widetilde{q_i} b_i$ need not be zero.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   255
Consider then $$\widetilde{q} = \sum_i (a_i \tensor \widetilde{q_i} \tensor b_i) - 1 \tensor (\sum_i a_i \widetilde{q_i} b_i) \tensor 1.$$ Certainly
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   256
$\widetilde{q} \in \ker(C \tensor E \tensor C \to E)$. Further,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   257
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   258
\hat{g}(\widetilde{q}) & = \sum_i (a_i \tensor g(\widetilde{q_i}) \tensor b_i) - 1 \tensor (\sum_i a_i g(\widetilde{q_i}) b_i) \tensor 1 \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   259
                       & = q - 0
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   260
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   261
(here we used that $g$ is a map of $C$-$C$ bimodules, and that $\sum_i a_i q_i b_i = 0$).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   262
69
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 68
diff changeset
   263
Similar arguments show that the functors
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   264
\begin{equation}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   265
\label{eq:ker-functor}%
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   266
M \mapsto \ker(C^{\tensor k} \tensor M \tensor C^{\tensor l} \to M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   267
\end{equation}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   268
are all exact too. Moreover, tensor products of such functors with each
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   269
other and with $C$ or $\ker(C^{\tensor k} \to C)$ (e.g., producing the functor $M \mapsto \ker(M \tensor C \to M)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   270
\tensor C \tensor \ker(C \tensor C \to M)$) are all still exact.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   271
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   272
Finally, then we see that the functor $K_*$ is simply an (infinite)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   273
direct sum of copies of this sort of functor. The direct sum is indexed by
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   274
configurations of nested blobs and of labels; for each such configuration, we have one of the above tensor product functors,
165
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   275
with the labels of twig blobs corresponding to tensor factors as in \eqref{eq:ker-functor} or $\ker(C^{\tensor k} \to C)$ (depending on whether they contain a marked point $p_i$), and all other labelled points corresponding
5234b7329042 fixing problem (need to treat linear combos) in the exactness lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   276
to tensor factors of $C$ and $M$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   277
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   278
\begin{proof}[Proof of Lemma \ref{lem:hochschild-coinvariants}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   279
We show that $H_0(K_*(M))$ is isomorphic to the coinvariants of $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   280
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   281
We define a map $\ev: K_0(M) \to M$. If $x \in K_0(M)$ has the label $m \in M$ at $*$, and labels $c_i \in C$ at the other labeled points of $S^1$, reading clockwise from $*$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   282
we set $\ev(x) = m c_1 \cdots c_k$. We can think of this as $\ev : M \tensor C^{\tensor k} \to M$, for each direct summand of $K_0(M)$ indexed by a configuration of labeled points.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   283
There is a quotient map $\pi: M \to \coinv{M}$, and the composition $\pi \compose \ev$ is well-defined on the quotient $H_0(K_*(M))$; if $y \in K_1(M)$, the blob in $y$ either contains $*$ or does not. If it doesn't, then
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   284
suppose $y$ has label $m$ at $*$, labels $c_i$ at other labeled points outside the blob, and the field inside the blob is a sum, with the $j$-th term having
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   285
labeled points $d_{j,i}$. Then $\sum_j d_{j,1} \tensor \cdots \tensor d_{j,k_j} \in \ker(\DirectSum_k C^{\tensor k} \to C)$, and so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   286
$\ev(\bdy y) = 0$, because $$C^{\tensor \ell_1} \tensor \ker(\DirectSum_k C^{\tensor k} \to C) \tensor C^{\tensor \ell_2} \subset \ker(\DirectSum_k C^{\tensor k} \to C).$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   287
Similarly, if $*$ is contained in the blob, then the blob label is a sum, with the $j$-th term have labelled points $d_{j,i}$ to the left of $*$, $m_j$ at $*$, and $d_{j,i}'$ to the right of $*$,
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   288
and there are labels $c_i$ at the labeled points outside the blob. We know that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   289
$$\sum_j d_{j,1} \tensor \cdots \tensor d_{j,k_j} \tensor m_j \tensor d_{j,1}' \tensor \cdots \tensor d_{j,k'_j}' \in \ker(\DirectSum_{k,k'} C^{\tensor k} \tensor M \tensor C^{\tensor k'} \tensor \to M),$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   290
and so
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   291
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   292
\ev(\bdy y) & = \sum_j m_j d_{j,1}' \cdots d_{j,k'_j}' c_1 \cdots c_k d_{j,1} \cdots d_{j,k_j} \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   293
            & = \sum_j d_{j,1} \cdots d_{j,k_j} m_j d_{j,1}' \cdots d_{j,k'_j}' c_1 \cdots c_k \\
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   294
            & = 0
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   295
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   296
where this time we use the fact that we're mapping to $\coinv{M}$, not just $M$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   297
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   298
The map $\pi \compose \ev: H_0(K_*(M)) \to \coinv{M}$ is clearly surjective ($\ev$ surjects onto $M$); we now show that it's injective. \todo{}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   299
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   300
\begin{proof}[Proof of Lemma \ref{lem:hochschild-free}]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   301
We show that $K_*(C\otimes C)$ is
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   302
quasi-isomorphic to the 0-step complex $C$. We'll do this in steps, establishing quasi-isomorphisms and homotopy equivalences
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   303
$$K_*(C \tensor C) \quismto K'_* \htpyto K''_* \quismto C.$$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   304
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   305
Let $K'_* \sub K_*(C\otimes C)$ be the subcomplex where the label of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   306
the point $*$ is $1 \otimes 1 \in C\otimes C$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   307
We will show that the inclusion $i: K'_* \to K_*(C\otimes C)$ is a quasi-isomorphism.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   308
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   309
Fix a small $\ep > 0$.
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   310
Let $N_\ep$ be the ball of radius $\ep$ around $* \in S^1$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   311
Let $K_*^\ep \sub K_*(C\otimes C)$ be the subcomplex
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   312
generated by blob diagrams $b$ such that $N_\ep$ is either disjoint from
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   313
or contained in each blob of $b$, and the only labeled point inside $N_\ep$ is $*$.
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   314
%and the two boundary points of $N_\ep$ are not labeled points of $b$.
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   315
For a field $y$ on $N_\ep$, let $s_\ep(y)$ be the equivalent picture with~$*$
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   316
labeled by $1\otimes 1$ and the only other labeled points at distance $\pm\ep/2$ from $*$.
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   317
(See Figure \ref{fig:sy}.) Note that $y - s_\ep(y) \in U(N_\ep)$. We can think of
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   318
$\sigma_\ep$ as a chain map $K_*^\ep \to K_*^\ep$ given by replacing the restriction $y$ to $N_\ep$ of each field
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   319
appearing in an element of  $K_*^\ep$ with $s_\ep(y)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   320
Note that $\sigma_\ep(x) \in K'_*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   321
\begin{figure}[!ht]
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   322
\begin{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   323
y & = \mathfig{0.2}{hochschild/y} &
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   324
s_\ep(y) & = \mathfig{0.2}{hochschild/sy}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   325
\end{align*}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   326
\caption{Defining $s_\ep$.}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   327
\label{fig:sy}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   328
\end{figure}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   329
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   330
Define a degree 1 chain map $j_\ep : K_*^\ep \to K_*^\ep$ as follows.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   331
Let $x \in K_*^\ep$ be a blob diagram.
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   332
If $*$ is not contained in any twig blob, $j_\ep(x)$ is obtained by adding $N_\ep$ to
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   333
$x$ as a new twig blob, with label $y - s_\ep(y)$, where $y$ is the restriction of $x$ to $N_\ep$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   334
If $*$ is contained in a twig blob $B$ with label $u = \sum z_i$, $j_\ep(x)$ is obtained as follows.
66
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   335
Let $y_i$ be the restriction of $z_i$ to $N_\ep$.
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   336
Let $x_i$ be equal to $x$ outside of $B$, equal to $z_i$ on $B \setmin N_\ep$,
58707c93f5e7 start of hochschild revisions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 48
diff changeset
   337
and have an additional blob $N_\ep$ with label $y_i - s_\ep(y_i)$.
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   338
Define $j_\ep(x) = \sum x_i$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   339
\nn{need to check signs coming from blob complex differential}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   340
Note that if $x \in K'_* \cap K_*^\ep$ then $j_\ep(x) \in K'_*$ also.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   341
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   342
The key property of $j_\ep$ is
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   343
\eq{
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   344
    \bd j_\ep + j_\ep \bd = \id - \sigma_\ep.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   345
}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   346
If $j_\ep$ were defined on all of $K_*(C\otimes C)$, this would show that $\sigma_\ep$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   347
is a homotopy inverse to the inclusion $K'_* \to K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   348
One strategy would be to try to stitch together various $j_\ep$ for progressively smaller
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   349
$\ep$ and show that $K'_*$ is homotopy equivalent to $K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   350
Instead, we'll be less ambitious and just show that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   351
$K'_*$ is quasi-isomorphic to $K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   352
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   353
If $x$ is a cycle in $K_*(C\otimes C)$, then for sufficiently small $\ep$ we have
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   354
$x \in K_*^\ep$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   355
(This is true for any chain in $K_*(C\otimes C)$, since chains are sums of
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   356
finitely many blob diagrams.)
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   357
Then $x$ is homologous to $s_\ep(x)$, which is in $K'_*$, so the inclusion map
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   358
$K'_* \sub K_*(C\otimes C)$ is surjective on homology.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   359
If $y \in K_*(C\otimes C)$ and $\bd y = x \in K'_*$, then $y \in K_*^\ep$ for some $\ep$
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   360
and
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   361
\eq{
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   362
    \bd y = \bd (\sigma_\ep(y) + j_\ep(x)) .
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   363
}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   364
Since $\sigma_\ep(y) + j_\ep(x) \in F'$, it follows that the inclusion map is injective on homology.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   365
This completes the proof that $K'_*$ is quasi-isomorphic to $K_*(C\otimes C)$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   366
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   367
Let $K''_* \sub K'_*$ be the subcomplex of $K'_*$ where $*$ is not contained in any blob.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   368
We will show that the inclusion $i: K''_* \to K'_*$ is a homotopy equivalence.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   369
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   370
First, a lemma:  Let $G''_*$ and $G'_*$ be defined the same as $K''_*$ and $K'_*$, except with
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   371
$S^1$ replaced some (any) neighborhood of $* \in S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   372
Then $G''_*$ and $G'_*$ are both contractible
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   373
and the inclusion $G''_* \sub G'_*$ is a homotopy equivalence.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   374
For $G'_*$ the proof is the same as in (\ref{bcontract}), except that the splitting
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   375
$G'_0 \to H_0(G'_*)$ concentrates the point labels at two points to the right and left of $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   376
For $G''_*$ we note that any cycle is supported \nn{need to establish terminology for this; maybe
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   377
in ``basic properties" section above} away from $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   378
Thus any cycle lies in the image of the normal blob complex of a disjoint union
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   379
of two intervals, which is contractible by (\ref{bcontract}) and (\ref{disjunion}).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   380
Actually, we need the further (easy) result that the inclusion
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   381
$G''_* \to G'_*$ induces an isomorphism on $H_0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   382
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   383
Next we construct a degree 1 map (homotopy) $h: K'_* \to K'_*$ such that
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   384
for all $x \in K'_*$ we have
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   385
\eq{
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   386
    x - \bd h(x) - h(\bd x) \in K''_* .
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   387
}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   388
Since $K'_0 = K''_0$, we can take $h_0 = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   389
Let $x \in K'_1$, with single blob $B \sub S^1$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   390
If $* \notin B$, then $x \in K''_1$ and we define $h_1(x) = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   391
If $* \in B$, then we work in the image of $G'_*$ and $G''_*$ (with respect to $B$).
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   392
Choose $x'' \in G''_1$ such that $\bd x'' = \bd x$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   393
Since $G'_*$ is contractible, there exists $y \in G'_2$ such that $\bd y = x - x''$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   394
Define $h_1(x) = y$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   395
The general case is similar, except that we have to take lower order homotopies into account.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   396
Let $x \in K'_k$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   397
If $*$ is not contained in any of the blobs of $x$, then define $h_k(x) = 0$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   398
Otherwise, let $B$ be the outermost blob of $x$ containing $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   399
By xxxx above, $x = x' \bullet p$, where $x'$ is supported on $B$ and $p$ is supported away from $B$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   400
So $x' \in G'_l$ for some $l \le k$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   401
Choose $x'' \in G''_l$ such that $\bd x'' = \bd (x' - h_{l-1}\bd x')$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   402
Choose $y \in G'_{l+1}$ such that $\bd y = x' - x'' - h_{l-1}\bd x'$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   403
Define $h_k(x) = y \bullet p$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   404
This completes the proof that $i: K''_* \to K'_*$ is a homotopy equivalence.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   405
\nn{need to say above more clearly and settle on notation/terminology}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   406
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   407
Finally, we show that $K''_*$ is contractible.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   408
\nn{need to also show that $H_0$ is the right thing; easy, but I won't do it now}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   409
Let $x$ be a cycle in $K''_*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   410
The union of the supports of the diagrams in $x$ does not contain $*$, so there exists a
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   411
ball $B \subset S^1$ containing the union of the supports and not containing $*$.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   412
Adding $B$ as a blob to $x$ gives a contraction.
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   413
\nn{need to say something else in degree zero}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   414
\end{proof}
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   415
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   416
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   417
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   418
For purposes of illustration, we describe an explicit chain map
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   419
$\HC_*(M) \to K_*(M)$
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   420
between the Hochschild complex and the blob complex (with bimodule point)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   421
for degree $\le 2$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   422
This map can be completed to a homotopy equivalence, though we will not prove that here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   423
There are of course many such maps; what we describe here is one of the simpler possibilities.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   424
Describing the extension to higher degrees is straightforward but tedious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   425
\nn{but probably we should include the general case in a future version of this paper}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   426
136
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 100
diff changeset
   427
Recall that in low degrees $\HC_*(M)$ is
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   428
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   429
	\cdots \stackrel{\bd}{\to} M \otimes C\otimes C \stackrel{\bd}{\to} 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   430
			M \otimes C \stackrel{\bd}{\to} M
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   431
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   432
with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   433
\eqar{
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   434
	\bd(m\otimes a)  & = & ma - am \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   435
	\bd(m\otimes a \otimes b) & = & ma\otimes b - m\otimes ab + bm \otimes a .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   436
}
77
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   437
In degree 0, we send $m\in M$ to the 0-blob diagram $\mathfig{0.05}{hochschild/0-chains}$; the base point
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   438
in $S^1$ is labeled by $m$ and there are no other labeled points.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   439
In degree 1, we send $m\ot a$ to the sum of two 1-blob diagrams
77
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   440
as shown in Figure \ref{fig:hochschild-1-chains}.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   441
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   442
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   443
\begin{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   444
\mathfig{0.4}{hochschild/1-chains}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   445
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   446
\begin{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   447
u_1 & = \mathfig{0.05}{hochschild/u_1-1} - \mathfig{0.05}{hochschild/u_1-2} & u_2 & = \mathfig{0.05}{hochschild/u_2-1} - \mathfig{0.05}{hochschild/u_2-2} 
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   448
\end{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   449
\caption{The image of $m \tensor a$ in the blob complex.}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   450
\label{fig:hochschild-1-chains}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   451
\end{figure}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   452
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   453
In degree 2, we send $m\ot a \ot b$ to the sum of 24 (=6*4) 2-blob diagrams as shown in
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   454
Figure \ref{fig:hochschild-2-chains}. In Figure \ref{fig:hochschild-2-chains} the 1- and 2-blob diagrams are indicated only by their support.
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   455
We leave it to the reader to determine the labels of the 1-blob diagrams.
77
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   456
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   457
\begin{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   458
\mathfig{0.6}{hochschild/2-chains-0}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   459
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   460
\begin{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   461
\mathfig{0.4}{hochschild/2-chains-1} \qquad \mathfig{0.4}{hochschild/2-chains-2}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   462
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   463
\caption{The 0-, 1- and 2-chains in the image of $m \tensor a \tensor b$. Only the supports of the 1- and 2-blobs are shown.}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   464
\label{fig:hochschild-2-chains}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   465
\end{figure}
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   466
Each 2-cell in the figure is labeled by a ball $V$ in $S^1$ which contains the support of all
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   467
1-blob diagrams in its boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   468
Such a 2-cell corresponds to a sum of the 2-blob diagrams obtained by adding $V$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   469
as an outer (non-twig) blob to each of the 1-blob diagrams in the boundary of the 2-cell.
77
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   470
Figure \ref{fig:hochschild-example-2-cell} shows this explicitly for one of the 2-cells.
74
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   471
Note that the (blob complex) boundary of this sum of 2-blob diagrams is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   472
precisely the sum of the 1-blob diagrams corresponding to the boundary of the 2-cell.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   473
(Compare with the proof of \ref{bcontract}.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 69
diff changeset
   474
77
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   475
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   476
\begin{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   477
A = \mathfig{0.1}{hochschild/v_1} + \mathfig{0.1}{hochschild/v_2} + \mathfig{0.1}{hochschild/v_3} + \mathfig{0.1}{hochschild/v_4}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   478
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   479
\begin{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   480
v_1 & = \mathfig{0.05}{hochschild/v_1-1} -  \mathfig{0.05}{hochschild/v_1-2} &  v_2 & = \mathfig{0.05}{hochschild/v_2-1} -  \mathfig{0.05}{hochschild/v_2-2} \\ 
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   481
v_3 & = \mathfig{0.05}{hochschild/v_3-1} -  \mathfig{0.05}{hochschild/v_3-2} &  v_4 & = \mathfig{0.05}{hochschild/v_4-1} -  \mathfig{0.05}{hochschild/v_4-2}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   482
\end{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   483
\caption{One of the 2-cells from Figure \ref{fig:hochschild-2-chains}.}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 74
diff changeset
   484
\label{fig:hochschild-example-2-cell}
43
700ac2678d00 Q.I => hty equiv for free complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 39
diff changeset
   485
\end{figure}