text/comm_alg.tex
author Kevin Walker <kevin@canyon23.net>
Thu, 29 Jul 2010 22:44:21 -0400
changeset 501 fdb012a1c8fe
parent 470 ec8e9c920a34
child 502 cc44e5ed2db1
permissions -rw-r--r--
minor
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\section{Commutative algebras as $n$-categories}
147
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
     4
\label{sec:comm_alg}
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     6
If $C$ is a commutative algebra it
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
     7
can also be thought of as an $n$-category whose $j$-morphisms are trivial for
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
$j<n$ and whose $n$-morphisms are $C$. 
470
ec8e9c920a34 start on comm alg appendix
Kevin Walker <kevin@canyon23.net>
parents: 438
diff changeset
     9
The goal of this appendix is to compute
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    10
$\bc_*(M^n, C)$ for various commutative algebras $C$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    11
342
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    12
Moreover, we conjecture that the blob complex $\bc_*(M^n, $C$)$, for $C$ a commutative 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    13
algebra is homotopy equivalent to the higher Hochschild complex for $M^n$ with 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    14
coefficients in $C$ (see \cite{MR0339132, MR1755114, MR2383113}).  
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    15
This possibility was suggested to us by Thomas Tradler.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 236
diff changeset
    16
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 236
diff changeset
    17
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    18
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
    19
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    20
Let $k[t]$ denote the ring of polynomials in $t$ with coefficients in $k$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    21
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    22
Let $\Sigma^i(M)$ denote the $i$-th symmetric power of $M$, the configuration space of $i$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    23
unlabeled points in $M$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    24
Note that $\Sigma^0(M)$ is a point.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    25
Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    26
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    27
Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    28
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    29
\begin{prop} \label{sympowerprop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    30
$\bc_*(M, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    31
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    32
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    33
\begin{proof}
501
Kevin Walker <kevin@canyon23.net>
parents: 470
diff changeset
    34
We will use acyclic models (\S \ref{sec:moam}).
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    35
Our first task: For each blob diagram $b$ define a subcomplex $R(b)_* \sub C_*(\Sigma^\infty(M))$
501
Kevin Walker <kevin@canyon23.net>
parents: 470
diff changeset
    36
satisfying the conditions of Theorem \ref{moam-thm}.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    37
If $b$ is a 0-blob diagram, then it is just a $k[t]$ field on $M$, which is a 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
finite unordered collection of points of $M$ with multiplicities, which is
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    39
a point in $\Sigma^\infty(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    40
Define $R(b)_*$ to be the singular chain complex of this point.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    41
If $(B, u, r)$ is an $i$-blob diagram, let $D\sub M$ be its support (the union of the blobs).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    42
The path components of $\Sigma^\infty(D)$ are contractible, and these components are indexed 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    43
by the numbers of points in each component of $D$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    44
We may assume that the blob labels $u$ have homogeneous $t$ degree in $k[t]$, and so
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    45
$u$ picks out a component $X \sub \Sigma^\infty(D)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    46
The field $r$ on $M\setminus D$ can be thought of as a point in $\Sigma^\infty(M\setminus D)$,
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    47
and using this point we can embed $X$ in $\Sigma^\infty(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    48
Define $R(B, u, r)_*$ to be the singular chain complex of $X$, thought of as a 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    49
subspace of $\Sigma^\infty(M)$.
470
ec8e9c920a34 start on comm alg appendix
Kevin Walker <kevin@canyon23.net>
parents: 438
diff changeset
    50
It is easy to see that $R(\cdot)_*$ satisfies the condition on boundaries from 
501
Kevin Walker <kevin@canyon23.net>
parents: 470
diff changeset
    51
Theorem \ref{moam-thm}.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    52
Thus we have defined (up to homotopy) a map from 
501
Kevin Walker <kevin@canyon23.net>
parents: 470
diff changeset
    53
$\bc_*(M, k[t])$ to $C_*(\Sigma^\infty(M))$.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    54
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    55
Next we define, for each simplex $c$ of $C_*(\Sigma^\infty(M))$, a contractible subspace
501
Kevin Walker <kevin@canyon23.net>
parents: 470
diff changeset
    56
$R(c)_* \sub \bc_*(M, k[t])$.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    57
If $c$ is a 0-simplex we use the identification of the fields $\cC(M)$ and 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    58
$\Sigma^\infty(M)$ described above.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    59
Now let $c$ be an $i$-simplex of $\Sigma^j(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    60
Choose a metric on $M$, which induces a metric on $\Sigma^j(M)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    61
We may assume that the diameter of $c$ is small --- that is, $C_*(\Sigma^j(M))$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    62
is homotopy equivalent to the subcomplex of small simplices.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    63
How small?  $(2r)/3j$, where $r$ is the radius of injectivity of the metric.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    64
Let $T\sub M$ be the ``track" of $c$ in $M$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    65
\nn{do we need to define this precisely?}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    66
Choose a neighborhood $D$ of $T$ which is a disjoint union of balls of small diameter.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    67
\nn{need to say more precisely how small}
501
Kevin Walker <kevin@canyon23.net>
parents: 470
diff changeset
    68
Define $R(c)_*$ to be $\bc_*(D; k[t]) \sub \bc_*(M; k[t])$.
470
ec8e9c920a34 start on comm alg appendix
Kevin Walker <kevin@canyon23.net>
parents: 438
diff changeset
    69
This is contractible by Proposition \ref{bcontract}.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    70
We can arrange that the boundary/inclusion condition is satisfied if we start with
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    71
low-dimensional simplices and work our way up.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
\nn{need to be more precise}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    73
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    74
\nn{still to do: show indep of choice of metric; show compositions are homotopic to the identity
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    75
(for this, might need a lemma that says we can assume that blob diameters are small)}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    76
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    77
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    78
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 166
diff changeset
    79
\begin{prop} \label{ktchprop}
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    80
The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    81
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    82
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    83
\begin{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    84
The actions agree in degree 0, and both are compatible with gluing.
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
    85
(cf. uniqueness statement in Theorem \ref{thm:CH}.)
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    86
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    87
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    88
\medskip
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    89
400
a02a6158f3bd Breaking up 'properties' in the intro into smaller subsections, converting many properties back to theorems, and numbering according to where they occur in the text. Not completely done, e.g. the action map which needs statements made consistent.
Scott Morrison <scott@tqft.net>
parents: 342
diff changeset
    90
In view of Theorem \ref{thm:hochschild}, we have proved that $HH_*(k[t]) \cong C_*(\Sigma^\infty(S^1), k)$,
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    91
and that the cyclic homology of $k[t]$ is related to the action of rotations
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    92
on $C_*(\Sigma^\infty(S^1), k)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    93
\nn{probably should put a more precise statement about cyclic homology and $S^1$ actions in the Hochschild section}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    94
Let us check this directly.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    95
342
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    96
The algebra $k[t]$ has Koszul resolution 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    97
$k[t] \tensor k[t] \xrightarrow{t\tensor 1 - 1 \tensor t} k[t] \tensor k[t]$, 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    98
which has coinvariants $k[t] \xrightarrow{0} k[t]$. 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
    99
This is equal to its homology, so we have $HH_i(k[t]) \cong k[t]$ for $i=0,1$ and zero for $i\ge 2$.
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
   100
(See also  \cite[3.2.2]{MR1600246}.) This computation also tells us the $t$-gradings: 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
   101
$HH_0(k[t]) \iso k[t]$ is in the usual grading, and $HH_1(k[t]) \iso k[t]$ is shifted up by one.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   102
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   103
We can define a flow on $\Sigma^j(S^1)$ by having the points repel each other.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   104
The fixed points of this flow are the equally spaced configurations.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   105
This defines a map from $\Sigma^j(S^1)$ to $S^1/j$ ($S^1$ modulo a $2\pi/j$ rotation).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   106
The fiber of this map is $\Delta^{j-1}$, the $(j-1)$-simplex, 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   107
and the holonomy of the $\Delta^{j-1}$ bundle
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   108
over $S^1/j$ is induced by the cyclic permutation of its $j$ vertices.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   109
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   110
In particular, $\Sigma^j(S^1)$ is homotopy equivalent to a circle for $j>0$, and
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   111
of course $\Sigma^0(S^1)$ is a point.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   112
Thus the singular homology $H_i(\Sigma^\infty(S^1))$ has infinitely many generators for $i=0,1$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   113
and is zero for $i\ge 2$.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   114
Note that the $j$-grading here matches with the $t$-grading on the algebraic side.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   115
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   116
By xxxx and Proposition \ref{ktchprop}, 
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   117
the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   118
Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   119
If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   120
0, $\z/j \z$ in odd degrees, and 0 in positive even degrees.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   121
The point $\Sigma^0(S^1)$ contributes the homology of $BS^1$ which is $\z$ in even 
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
degrees and 0 in odd degrees.
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   123
This agrees with the calculation in \cite[3.1.7]{MR1600246}.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   124
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   125
\medskip
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   127
Next we consider the case $C = k[t_1, \ldots, t_m]$, commutative polynomials in $m$ variables.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   128
Let $\Sigma_m^\infty(M)$ be the $m$-colored infinite symmetric power of $M$, that is, configurations
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   129
of points on $M$ which can have any of $m$ distinct colors but are otherwise indistinguishable.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   130
The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
corresponding to the number of points of each color of a configuration.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   132
A proof similar to that of \ref{sympowerprop} shows that
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   133
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   134
\begin{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   135
$\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   136
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   137
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   138
According to \cite[3.2.2]{MR1600246},
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   139
\[
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   140
	HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] .
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   141
\]
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   142
Let us check that this is also the singular homology of $\Sigma_m^\infty(S^1)$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   143
We will content ourselves with the case $k = \z$.
342
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
   144
One can define a flow on $\Sigma_m^\infty(S^1)$ where points of the 
1d76e832d32f breaking long lines
Kevin Walker <kevin@canyon23.net>
parents: 325
diff changeset
   145
same color repel each other and points of different colors do not interact.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   146
This shows that a component $X$ of $\Sigma_m^\infty(S^1)$ is homotopy equivalent
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   147
to the torus $(S^1)^l$, where $l$ is the number of non-zero entries in the $m$-tuple
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   148
corresponding to $X$.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   149
The homology calculation we desire follows easily from this.
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   150
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   151
\nn{say something about cyclic homology in this case?  probably not necessary.}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   152
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   153
\medskip
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   154
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   155
Next we consider the case $C$ is the truncated polynomial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   156
algebra $k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   157
Define $\Delta_l \sub \Sigma^\infty(M)$ to be configurations of points in $M$ with $l$ or
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   158
more of the points coinciding.
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   159
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
\begin{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   161
$\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   162
(relative singular chains with coefficients in $k$).
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   163
\end{prop}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   164
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   165
\begin{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   166
\nn{...}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   167
\end{proof}
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   168
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   169
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   170
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   171
\medskip
100
c5a43be00ed4 No new content, just rearranging (and procrastinating)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   172
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   173
Still to do:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   174
\begin{itemize}
166
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 163
diff changeset
   175
\item compare the topological computation for truncated polynomial algebra with \cite{MR1600246}
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   176
\item multivariable truncated polynomial algebras (at least mention them)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   177
\item ideally, say something more about higher hochschild homology (maybe sketch idea for proof of equivalence)
431
Scott Morrison <scott@tqft.net>
parents: 342
diff changeset
   178
\item say something about SMCs as $n$-categories, e.g. Vect and K-theory.
163
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   179
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 147
diff changeset
   180