text/appendixes/famodiff.tex
changeset 274 8e021128cf8f
parent 273 ec9458975d92
child 275 81d7c550b3da
equal deleted inserted replaced
273:ec9458975d92 274:8e021128cf8f
    97 the $k$-handles at $B^{k-1}\times\{0\}$ and $B^{k-1}\times\{1\}$.
    97 the $k$-handles at $B^{k-1}\times\{0\}$ and $B^{k-1}\times\{1\}$.
    98 Let $\eta : E \to [0,1]$, $\eta(x, s) = s$ be the normal coordinate
    98 Let $\eta : E \to [0,1]$, $\eta(x, s) = s$ be the normal coordinate
    99 of $E$.
    99 of $E$.
   100 Let $D_0$ and $D_1$ be the two $k$-handles of $\jj$ adjacent to $E$.
   100 Let $D_0$ and $D_1$ be the two $k$-handles of $\jj$ adjacent to $E$.
   101 There is at most one index $\beta$ such that $C(D_0, \beta) \ne C(D_1, \beta)$.
   101 There is at most one index $\beta$ such that $C(D_0, \beta) \ne C(D_1, \beta)$.
   102 (If there is no such index $\beta$, choose $\beta$
   102 (If there is no such index, choose $\beta$
   103 arbitrarily.)
   103 arbitrarily.)
   104 For $p \in E$, define
   104 For $p \in E$, define
   105 \eq{
   105 \eq{
   106     u(t, p, x) = (1-t)p + t \left( \sum_{\alpha \ne \beta} r_\alpha(x) p(D_0, \alpha)
   106     u(t, p, x) = (1-t)p + t \left( \sum_{\alpha \ne \beta} r_\alpha(x) p(D_0, \alpha)
   107             + r_\beta(x) (\eta(p) p(D_0, p) + (1-\eta(p)) p(D_1, p)) \right) .
   107             + r_\beta(x) (\eta(p) p(D_0, p) + (1-\eta(p)) p(D_1, p)) \right) .
   108 }
   108 }
   109 
   109 
   110 \nn{*** resume revising here ***}
   110 
   111 
   111 Now for the general case.
   112 In general, for $E$ a $k{-}j$-handle, there is a normal coordinate
   112 Let $E$ be a $k{-}j$-handle.
   113 $\eta: E \to R$, where $R$ is some $j$-dimensional polyhedron.
   113 Let $D_0,\ldots,D_a$ be the $k$-handles adjacent to $E$.
   114 The vertices of $R$ are associated to $k$-cells of the $K_\alpha$, and thence to points of $P$.
   114 There is a subset of cover indices $\cN$, of cardinality $j$, 
   115 If we triangulate $R$ (without introducing new vertices), we can linearly extend
   115 such that if $\alpha\notin\cN$ then
   116 a map from the vertices of $R$ into $P$ to a map of all of $R$ into $P$.
   116 $p(D_u, \alpha) = p(D_v, \alpha)$ for all $0\le u,v \le a$.
   117 Let $\cN$ be the set of all $\beta$ for which $K_\beta$ has a $k$-cell whose boundary meets
   117 For fixed $\beta\in\cN$ let $\{q_{\beta i}\}$ be the set of values of 
   118 the $k{-}j$-cell corresponding to $E$.
   118 $p(D_u, \beta)$ for $0\le u \le a$.
   119 For each $\beta \in \cN$, let $\{q_{\beta i}\}$ be the set of points in $P$ associated to the aforementioned $k$-cells.
   119 Recall the product structure $E = B^{k-j}\times B^j$.
       
   120 Inductively, we have defined functions $\eta_{\beta i}:\bd B^j \to [0,1]$ such that
       
   121 $\sum_i \eta_{\beta i} = 1$ for all $\beta\in \cN$.
       
   122 Choose extensions of $\eta_{\beta i}$ to all of $B^j$.
       
   123 Via the projection $E\to B^j$, regard $\eta_{\beta i}$ as a function on $E$.
   120 Now define, for $p \in E$,
   124 Now define, for $p \in E$,
   121 \begin{equation}
   125 \begin{equation}
   122 \label{eq:u}
   126 \label{eq:u}
   123     u(t, p, x) = (1-t)p + t \left(
   127     u(t, p, x) = (1-t)p + t \left(
   124             \sum_{\alpha \notin \cN} r_\alpha(x) p_{c_\alpha}
   128             \sum_{\alpha \notin \cN} r_\alpha(x) p_{c_\alpha}
   125                 + \sum_{\beta \in \cN} r_\beta(x) \left( \sum_i \eta_{\beta i}(p) \cdot q_{\beta i} \right)
   129                 + \sum_{\beta \in \cN} r_\beta(x) \left( \sum_i \eta_{\beta i}(p) \cdot q_{\beta i} \right)
   126              \right) .
   130              \right) .
   127 \end{equation}
   131 \end{equation}
   128 Here $\eta_{\beta i}(p)$ is the weight given to $q_{\beta i}$ by the linear extension
       
   129 mentioned above.
       
   130 
   132 
   131 This completes the definition of $u: I \times P \times X \to P$.
   133 This completes the definition of $u: I \times P \times X \to P$.
   132 
   134 
   133 \medskip
   135 \medskip
   134 
   136 
   135 Next we verify that $u$ has the desired properties.
   137 Next we verify that $u$ affords $F$ the properties claimed in the statement of the lemma.
   136 
   138 
   137 Since $u(0, p, x) = p$ for all $p\in P$ and $x\in X$, $F(0, p, x) = f(p, x)$ for all $p$ and $x$.
   139 Since $u(0, p, x) = p$ for all $p\in P$ and $x\in X$, $F(0, p, x) = f(p, x)$ for all $p$ and $x$.
   138 Therefore $F$ is a homotopy from $f$ to something.
   140 Therefore $F$ is a homotopy from $f$ to something.
       
   141 
       
   142 \nn{*** resume revising here ***}
   139 
   143 
   140 Next we show that if the $K_\alpha$'s are sufficiently fine cell decompositions,
   144 Next we show that if the $K_\alpha$'s are sufficiently fine cell decompositions,
   141 then $F$ is a homotopy through diffeomorphisms.
   145 then $F$ is a homotopy through diffeomorphisms.
   142 We must show that the derivative $\pd{F}{x}(t, p, x)$ is non-singular for all $(t, p, x)$.
   146 We must show that the derivative $\pd{F}{x}(t, p, x)$ is non-singular for all $(t, p, x)$.
   143 We have
   147 We have