text/ncat.tex
author Scott Morrison <scott@tqft.net>
Thu, 03 Jun 2010 12:33:47 -0700
changeset 329 eb03c4a92f98
parent 328 bc22926d4fb0
child 331 956f373f6ff6
child 333 3e61a9197613
permissions -rw-r--r--
various changes, mostly rewriting intros to sections for exposition
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
     4
\def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
312
5bb1cbe49c40 misc. minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 311
diff changeset
     6
\section{$n$-categories and their modules}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
\label{sec:ncats}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
     9
\subsection{Definition of $n$-categories}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
    10
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    11
Before proceeding, we need more appropriate definitions of $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
$A_\infty$ $n$-categories, modules for these, and tensor products of these modules.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    13
(As is the case throughout this paper, by ``$n$-category" we implicitly intend some notion of
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    14
a `weak' $n$-category with `strong duality'.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    15
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    16
The definitions presented below tie the categories more closely to the topology
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    17
and avoid combinatorial questions about, for example, the minimal sufficient
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    18
collections of generalized associativity axioms; we prefer maximal sets of axioms to minimal sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    19
For examples of topological origin, it is typically easy to show that they
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    20
satisfy our axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    21
For examples of a more purely algebraic origin, one would typically need the combinatorial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    22
results that we have avoided here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    23
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    24
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    25
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    26
There are many existing definitions of $n$-categories, with various intended uses. In any such definition, there are sets of $k$-morphisms for each $0 \leq k \leq n$. Generally, these sets are indexed by instances of a certain typical shape. 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    27
Some $n$-category definitions model $k$-morphisms on the standard bihedrons (interval, bigon, and so on).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    28
Other definitions have a separate set of 1-morphisms for each interval $[0,l] \sub \r$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    29
a separate set of 2-morphisms for each rectangle $[0,l_1]\times [0,l_2] \sub \r^2$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    30
and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    31
(This allows for strict associativity.)
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    32
Still other definitions (see, for example, \cite{MR2094071})
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    33
model the $k$-morphisms on more complicated combinatorial polyhedra.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    34
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    35
For our definition, we will allow our $k$-morphisms to have any shape, so long as it is homeomorphic to the standard $k$-ball. Thus we expect to associate a set of $k$-morphisms $\cC_k(X)$ to any $k$-manifold $X$ homeomorphic 
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    36
to the standard $k$-ball. By ``a $k$-ball" we mean any $k$-manifold which is homeomorphic to the 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    37
standard $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    38
We {\it do not} assume that it is equipped with a 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    39
preferred homeomorphism to the standard $k$-ball, and the same applies to ``a $k$-sphere" below.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    40
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    41
Given a homeomorphism $f:X\to Y$ between $k$-balls (not necessarily fixed on 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    42
the boundary), we want a corresponding
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    43
bijection of sets $f:\cC(X)\to \cC(Y)$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    44
(This will imply ``strong duality", among other things.) Putting these together, we have
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    45
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    46
\begin{axiom}[Morphisms]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    47
\label{axiom:morphisms}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    48
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    49
the category of $k$-balls and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    50
homeomorphisms to the category of sets and bijections.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    51
\end{axiom}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    52
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    53
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    54
(Note: We usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    55
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    56
We are so far  being deliberately vague about what flavor of $k$-balls
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    57
we are considering.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    58
They could be unoriented or oriented or Spin or $\mbox{Pin}_\pm$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    59
They could be topological or PL or smooth.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    60
%\nn{need to check whether this makes much difference}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    61
(If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    62
to be fussier about corners.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    63
For each flavor of manifold there is a corresponding flavor of $n$-category.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    64
We will concentrate on the case of PL unoriented manifolds.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    65
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    66
(The ambitious reader may want to keep in mind two other classes of balls.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    67
The first is balls equipped with a map to some other space $Y$ (c.f. \cite{MR2079378}). 
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    68
This will be used below to describe the blob complex of a fiber bundle with
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    69
base space $Y$.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    70
The second is balls equipped with a section of the the tangent bundle, or the frame
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    71
bundle (i.e.\ framed balls), or more generally some flag bundle associated to the tangent bundle.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    72
These can be used to define categories with less than the ``strong" duality we assume here,
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    73
though we will not develop that idea fully in this paper.)
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    74
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    75
Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    76
of morphisms).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    77
The 0-sphere is unusual among spheres in that it is disconnected.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    78
Correspondingly, for 1-morphisms it makes sense to distinguish between domain and range.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    79
(Actually, this is only true in the oriented case, with 1-morphisms parameterized
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    80
by oriented 1-balls.)
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
    81
For $k>1$ and in the presence of strong duality the division into domain and range makes less sense. For example, in a pivotal tensor category, there are natural isomorphisms $\Hom{}{A}{B \tensor C} \isoto \Hom{}{B^* \tensor A}{C}$, etc. (sometimes called ``Frobenius reciprocity''), which canonically identify all the morphism spaces which have the same boundary. We prefer to not make the distinction in the first place.
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    82
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    83
Instead, we will combine the domain and range into a single entity which we call the 
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    84
boundary of a morphism.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    85
Morphisms are modeled on balls, so their boundaries are modeled on spheres.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    86
In other words, we need to extend the functors $\cC_{k-1}$ from balls to spheres, for 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    87
$1\le k \le n$.
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
    88
At first it might seem that we need another axiom for this, but in fact once we have
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    89
all the axioms in the subsection for $0$ through $k-1$ we can use a coend
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    90
construction, as described in Subsection \ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    91
to spheres (and any other manifolds):
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    92
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    93
\begin{prop}
303
2252c53bd449 minor changes in a few places
Scott Morrison <scott@tqft.net>
parents: 291
diff changeset
    94
\label{axiom:spheres}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    95
For each $1 \le k \le n$, we have a functor $\cC_{k-1}$ from 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    96
the category of $k{-}1$-spheres and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    97
homeomorphisms to the category of sets and bijections.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    98
\end{prop}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    99
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   100
We postpone the proof \todo{} of this result until after we've actually given all the axioms. Note that defining this functor for some $k$ only requires the data described in Axiom \ref{axiom:morphisms} at level $k$, along with the data described in the other Axioms at lower levels. 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   101
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   102
%In fact, the functors for spheres are entirely determined by the functors for balls and the subsequent axioms. (In particular, $\cC(S^k)$ is the colimit of $\cC$ applied to decompositions of $S^k$ into balls.) However, it is easiest to think of it as additional data at this point.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   103
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   104
\begin{axiom}[Boundaries]\label{nca-boundary}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   105
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cC_{k-1}(\bd X)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   106
These maps, for various $X$, comprise a natural transformation of functors.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   107
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   109
(Note that the first ``$\bd$" above is part of the data for the category, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   110
while the second is the ordinary boundary of manifolds.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   111
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   112
Given $c\in\cC(\bd(X))$, we will write $\cC(X; c)$ for $\bd^{-1}(c)$, those morphisms with specified boundary $c$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   114
Most of the examples of $n$-categories we are interested in are enriched in the following sense.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   115
The various sets of $n$-morphisms $\cC(X; c)$, for all $n$-balls $X$ and
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
   116
all $c\in \cC(\bd X)$, have the structure of an object in some auxiliary symmetric monoidal category
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   117
(e.g.\ vector spaces, or modules over some ring, or chain complexes),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   118
and all the structure maps of the $n$-category should be compatible with the auxiliary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   119
category structure.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   120
Note that this auxiliary structure is only in dimension $n$;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   121
$\cC(Y; c)$ is just a plain set if $\dim(Y) < n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   123
\medskip
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   124
\nn{
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   125
%At the moment I'm a little confused about orientations, and more specifically
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   126
%about the role of orientation-reversing maps of boundaries when gluing oriented manifolds.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   127
Maybe need a discussion about what the boundary of a manifold with a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   128
structure (e.g. orientation) means.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   129
Tentatively, I think we need to redefine the oriented boundary of an oriented $n$-manifold.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   130
Instead of an ordinary oriented $(n-1)$-manifold via the inward (or outward) normal 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
first (or last) convention, perhaps it is better to define the boundary to be an $(n-1)$-manifold
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   132
equipped with an orientation of its once-stabilized tangent bundle.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   133
Similarly, in dimension $n-k$ we would have manifolds equipped with an orientation of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   134
their $k$ times stabilized tangent bundles.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
   135
(cf. \cite{MR2079378}.)
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   136
Probably should also have a framing of the stabilized dimensions in order to indicate which 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   137
side the bounded manifold is on.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   138
For the moment just stick with unoriented manifolds.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   139
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   140
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   141
We have just argued that the boundary of a morphism has no preferred splitting into
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   142
domain and range, but the converse meets with our approval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   143
That is, given compatible domain and range, we should be able to combine them into
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   144
the full boundary of a morphism.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   145
The following proposition follows from the coend construction used to define $\cC_{k-1}$
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   146
on spheres.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   147
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   148
\begin{prop}[Boundary from domain and range]
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   149
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   150
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   151
Let $\cC(B_1) \times_{\cC(E)} \cC(B_2)$ denote the fibered product of the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   152
two maps $\bd: \cC(B_i)\to \cC(E)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   153
Then we have an injective map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   154
\[
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   155
	\gl_E : \cC(B_1) \times_{\cC(E)} \cC(B_2) \into \cC(S)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   156
\]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   157
which is natural with respect to the actions of homeomorphisms.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   158
(When $k=1$ we stipulate that $\cC(E)$ is a point, so that the above fibered product
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   159
becomes a normal product.)
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   160
\end{prop}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   161
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   162
\begin{figure}[!ht]
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   163
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   164
\begin{tikzpicture}[%every label/.style={green}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   165
					]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   166
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   167
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   168
\draw (S) arc  (-90:90:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   169
\draw (N) arc  (90:270:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   170
\node[left] at (-1,1) {$B_1$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   171
\node[right] at (1,1) {$B_2$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   172
\end{tikzpicture}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   173
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   174
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   175
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   176
Note that we insist on injectivity above.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   177
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   178
Let $\cC(S)_E$ denote the image of $\gl_E$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   179
We will refer to elements of $\cC(S)_E$ as ``splittable along $E$" or ``transverse to $E$". 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   180
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   181
If $X$ is a $k$-ball and $E \sub \bd X$ splits $\bd X$ into two $k{-}1$-balls $B_1$ and $B_2$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   182
as above, then we define $\cC(X)_E = \bd^{-1}(\cC(\bd X)_E)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   183
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   184
We will call the projection $\cC(S)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   185
a {\it restriction} map and write $\res_{B_i}(a)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   186
(or simply $\res(a)$ when there is no ambiguity), for $a\in \cC(S)_E$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   187
More generally, we also include under the rubric ``restriction map" the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   188
the boundary maps of Axiom \ref{nca-boundary} above,
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   189
another class of maps introduced after Axiom \ref{nca-assoc} below, as well as any composition
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   190
of restriction maps.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   191
In particular, we have restriction maps $\cC(X)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   192
($i = 1, 2$, notation from previous paragraph).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   193
These restriction maps can be thought of as 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   194
domain and range maps, relative to the choice of splitting $\bd X = B_1 \cup_E B_2$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   197
Next we consider composition of morphisms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   198
For $n$-categories which lack strong duality, one usually considers
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   199
$k$ different types of composition of $k$-morphisms, each associated to a different direction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   200
(For example, vertical and horizontal composition of 2-morphisms.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   201
In the presence of strong duality, these $k$ distinct compositions are subsumed into 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   202
one general type of composition which can be in any ``direction".
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   203
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   204
\begin{axiom}[Composition]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   205
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   206
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   207
Let $E = \bd Y$, which is a $k{-}2$-sphere.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   208
Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   209
We have restriction (domain or range) maps $\cC(B_i)_E \to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   210
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   211
We have a map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   212
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   213
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   214
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   215
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   216
to the intersection of the boundaries of $B$ and $B_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
If $k < n$ we require that $\gl_Y$ is injective.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   218
(For $k=n$, see below.)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   219
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   220
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   221
\begin{figure}[!ht]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   222
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   223
\begin{tikzpicture}[%every label/.style={green},
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   224
				x=1.5cm,y=1.5cm]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   225
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   226
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   227
\draw (S) arc  (-90:90:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   228
\draw (N) arc  (90:270:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   229
\draw (N) -- (S);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   230
\node[left] at (-1/4,1) {$B_1$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   231
\node[right] at (1/4,1) {$B_2$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   232
\node at (1/6,3/2)  {$Y$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   233
\end{tikzpicture}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   234
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   235
\caption{From two balls to one ball.}\label{blah5}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   236
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   237
\begin{axiom}[Strict associativity] \label{nca-assoc}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   238
The composition (gluing) maps above are strictly associative.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   239
\end{axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   240
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   241
\begin{figure}[!ht]
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   242
$$\mathfig{.65}{ncat/strict-associativity}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   243
\caption{An example of strict associativity.}\label{blah6}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   244
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   245
We'll use the notations  $a\bullet b$ as well as $a \cup b$ for the glued together field $\gl_Y(a, b)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   246
In the other direction, we will call the projection from $\cC(B)_E$ to $\cC(B_i)_E$ 
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   247
a restriction map (one of many types of map so called) and write $\res_{B_i}(a)$ for $a\in \cC(B)_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   248
%Compositions of boundary and restriction maps will also be called restriction maps.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   249
%For example, if $B$ is a $k$-ball and $Y\sub \bd B$ is a $k{-}1$-ball, there is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   250
%restriction map from $\cC(B)_{\bd Y}$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   251
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   252
We will write $\cC(B)_Y$ for the image of $\gl_Y$ in $\cC(B)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   253
We will call elements of $\cC(B)_Y$ morphisms which are `splittable along $Y$' or `transverse to $Y$'.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   254
We have $\cC(B)_Y \sub \cC(B)_E \sub \cC(B)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   255
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   256
More generally, let $\alpha$ be a subdivision of a ball $X$ into smaller balls.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   257
Let $\cC(X)_\alpha \sub \cC(X)$ denote the image of the iterated gluing maps from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   258
the smaller balls to $X$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   259
We  say that elements of $\cC(X)_\alpha$ are morphisms which are `splittable along $\alpha$'.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   260
In situations where the subdivision is notationally anonymous, we will write
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   261
$\cC(X)\spl$ for the morphisms which are splittable along (a.k.a.\ transverse to)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   262
the unnamed subdivision.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   263
If $\beta$ is a subdivision of $\bd X$, we define $\cC(X)_\beta \deq \bd\inv(\cC(\bd X)_\beta)$;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   264
this can also be denoted $\cC(X)\spl$ if the context contains an anonymous
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   265
subdivision of $\bd X$ and no competing subdivision of $X$.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   266
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   267
The above two composition axioms are equivalent to the following one,
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   268
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   269
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   270
\xxpar{Multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   271
{Given any decomposition $B = B_1\cup\cdots\cup B_m$ of a $k$-ball
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   272
into small $k$-balls, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   273
map from an appropriate subset (like a fibered product) 
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   274
of $\cC(B_1)\spl\times\cdots\times\cC(B_m)\spl$ to $\cC(B)\spl$,
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   275
and these various $m$-fold composition maps satisfy an
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   276
operad-type strict associativity condition (Figure \ref{blah7}).}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   277
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   278
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   279
$$\mathfig{.8}{tempkw/blah7}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   280
\caption{Operad composition and associativity}\label{blah7}\end{figure}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   281
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   282
The next axiom is related to identity morphisms, though that might not be immediately obvious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   283
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   284
\begin{axiom}[Product (identity) morphisms]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   285
For each $k$-ball $X$ and $m$-ball $D$, with $k+m \le n$, there is a map $\cC(X)\to \cC(X\times D)$, usually denoted $a\mapsto a\times D$ for $a\in \cC(X)$. These maps must satisfy the following conditions.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   286
\begin{enumerate}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   287
\item
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   288
If $f:X\to X'$ and $\tilde{f}:X\times D \to X'\times D'$ are maps such that the diagram
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   289
\[ \xymatrix{
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   290
	X\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & X'\times D' \ar[d]^{\pi} \\
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   291
	X \ar[r]^{f} & X'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   292
} \]
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   293
commutes, then we have 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   294
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   295
	\tilde{f}(a\times D) = f(a)\times D' .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   296
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   297
\item
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   298
Product morphisms are compatible with gluing (composition) in both factors:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   299
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   300
	(a'\times D)\bullet(a''\times D) = (a'\bullet a'')\times D
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   301
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   302
and
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   303
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   304
	(a\times D')\bullet(a\times D'') = a\times (D'\bullet D'') .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   305
\]
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   306
\nn{if pinched boundary, then remove first case above}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   307
\item
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   308
Product morphisms are associative:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   309
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   310
	(a\times D)\times D' = a\times (D\times D') .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   311
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   312
(Here we are implicitly using functoriality and the obvious homeomorphism
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   313
$(X\times D)\times D' \to X\times(D\times D')$.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   314
\item
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   315
Product morphisms are compatible with restriction:
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   316
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   317
	\res_{X\times E}(a\times D) = a\times E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   318
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   319
for $E\sub \bd D$ and $a\in \cC(X)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   320
\end{enumerate}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   321
\end{axiom}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   322
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   323
\nn{need even more subaxioms for product morphisms?}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   324
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   325
\nn{Almost certainly we need a little more than the above axiom.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   326
More specifically, in order to bootstrap our way from the top dimension
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   327
properties of identity morphisms to low dimensions, we need regular products,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   328
pinched products and even half-pinched products.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   329
I'm not sure what the best way to cleanly axiomatize the properties of these various
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   330
products is.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   331
For the moment, I'll assume that all flavors of the product are at
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   332
our disposal, and I'll plan on revising the axioms later.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   333
128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   334
\nn{current idea for fixing this: make the above axiom a ``preliminary version"
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   335
(as we have already done with some of the other axioms), then state the official
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   336
axiom for maps $\pi: E \to X$ which are almost fiber bundles.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   337
one option is to restrict E to be a (full/half/not)-pinched product (up to homeo).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   338
the alternative is to give some sort of local criterion for what's allowed.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   339
state a gluing axiom for decomps $E = E'\cup E''$ where all three are of the correct type.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   340
}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   341
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   342
All of the axioms listed above hold for both ordinary $n$-categories and $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   343
The last axiom (below), concerning actions of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   344
homeomorphisms in the top dimension $n$, distinguishes the two cases.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   345
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   346
We start with the plain $n$-category case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   347
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   348
\begin{axiom}[Isotopy invariance in dimension $n$]{\textup{\textbf{[preliminary]}}}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   349
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   350
to the identity on $\bd X$ and is isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   351
Then $f$ acts trivially on $\cC(X)$; $f(a) = a$ for all $a\in \cC(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   352
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   353
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   354
This axiom needs to be strengthened to force product morphisms to act as the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   355
Let $X$ be an $n$-ball and $Y\sub\bd X$ be an $n{-}1$-ball.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   356
Let $J$ be a 1-ball (interval).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   357
We have a collaring homeomorphism $s_{Y,J}: X\cup_Y (Y\times J) \to X$.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   358
(Here we use the ``pinched" version of $Y\times J$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   359
\nn{need notation for this})
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   360
We define a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   361
\begin{eqnarray*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   362
	\psi_{Y,J}: \cC(X) &\to& \cC(X) \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   363
	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   364
\end{eqnarray*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   365
(See Figure \ref{glue-collar}.)
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   366
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   367
\begin{equation*}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   368
\begin{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   369
\def\rad{1}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   370
\def\srad{0.75}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   371
\def\gap{4.5}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   372
\foreach \i in {0, 1, 2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   373
	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   374
	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   375
	\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   376
		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   377
	}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   378
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   379
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   380
\begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   381
	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   382
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   383
\node[right=1mm] at (0.east) {$a$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   384
\draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   385
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   386
\draw (1-small)  circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   387
\foreach \theta in {90, 72, ..., -90} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   388
	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   389
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   390
\filldraw[fill=white] (1) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   391
\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   392
	\fill (intersection \n of 1-small and 1) circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   393
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   394
\node[below] at (1-small.south) {$a \times J$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   395
\draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   396
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   397
\begin{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   398
\path[clip] (2) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   399
\draw[clip] (2.east) circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   400
\foreach \y in {1, 0.86, ..., -1} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   401
	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   402
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   403
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   404
\end{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   405
\end{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   406
\begin{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   407
\xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   408
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   409
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   410
\caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   411
We say that $\psi_{Y,J}$ is {\it extended isotopic} to the identity map.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   412
\nn{bad terminology; fix it later}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   413
\nn{also need to make clear that plain old isotopic to the identity implies
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   414
extended isotopic}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   415
\nn{maybe remark that in some examples (e.g.\ ones based on sub cell complexes) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   416
extended isotopies are also plain isotopies, so
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   417
no extension necessary}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   418
It can be thought of as the action of the inverse of
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   419
a map which projects a collar neighborhood of $Y$ onto $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   420
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   421
The revised axiom is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   422
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   423
\addtocounter{axiom}{-1}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   424
\begin{axiom}{\textup{\textbf{[topological  version]}} Extended isotopy invariance in dimension $n$}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   425
\label{axiom:extended-isotopies}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   426
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   427
to the identity on $\bd X$ and is extended isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   428
Then $f$ acts trivially on $\cC(X)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   429
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   430
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   431
\nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   432
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   433
\smallskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   434
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   435
For $A_\infty$ $n$-categories, we replace
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   436
isotopy invariance with the requirement that families of homeomorphisms act.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   437
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   438
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   439
\addtocounter{axiom}{-1}
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   440
\begin{axiom}{\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   441
For each $n$-ball $X$ and each $c\in \cC(\bd X)$ we have a map of chain complexes
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   442
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   443
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   444
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   445
Here $C_*$ means singular chains and $\Homeo_\bd(X)$ is the space of homeomorphisms of $X$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   446
which fix $\bd X$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   447
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   448
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 225
diff changeset
   449
a diagram like the one in Proposition \ref{CHprop} commutes.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   450
\nn{repeat diagram here?}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   451
\nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   452
\end{axiom}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   453
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   454
We should strengthen the above axiom to apply to families of extended homeomorphisms.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   455
To do this we need to explain how extended homeomorphisms form a topological space.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   456
Roughly, the set of $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   457
and we can replace the class of all intervals $J$ with intervals contained in $\r$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   458
\nn{need to also say something about collaring homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   459
\nn{this paragraph needs work.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   460
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   461
Note that if we take homology of chain complexes, we turn an $A_\infty$ $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   462
into a plain $n$-category (enriched over graded groups).
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   463
\nn{say more here?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   464
In a different direction, if we enrich over topological spaces instead of chain complexes,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   465
we get a space version of an $A_\infty$ $n$-category, with $\Homeo_\bd(X)$ acting 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   466
instead of  $C_*(\Homeo_\bd(X))$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   467
Taking singular chains converts such a space type $A_\infty$ $n$-category into a chain complex
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   468
type $A_\infty$ $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   469
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   470
\medskip
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   471
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   472
The alert reader will have already noticed that our definition of a (plain) $n$-category
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   473
is extremely similar to our definition of a topological system of fields.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   474
There are two essential differences.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   475
First, for the $n$-category definition we restrict our attention to balls
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   476
(and their boundaries), while for fields we consider all manifolds.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   477
Second,  in category definition we directly impose isotopy
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   478
invariance in dimension $n$, while in the fields definition we have do not expect isotopy invariance on fields
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   479
but instead remember a subspace of local relations which contain differences of isotopic fields. (Recall that the compensation for this complication is that we can demand that the gluing map for fields is injective.)
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   480
Thus a system of fields and local relations $(\cF,\cU)$ determines an $n$-category $\cC_ {\cF,\cU}$ simply by restricting our attention to
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   481
balls and, at level $n$, quotienting out by the local relations:
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   482
\begin{align*}
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   483
\cC_{\cF,\cU}(B^k) & = \begin{cases}\cF(B) & \text{when $k<n$,} \\ \cF(B) / \cU(B) & \text{when $k=n$.}\end{cases}
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   484
\end{align*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   485
This $n$-category can be thought of as the local part of the fields.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   486
Conversely, given a topological $n$-category we can construct a system of fields via 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   487
a colimit construction; see \S \ref{ss:ncat_fields} below.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   488
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   489
\subsection{Examples of $n$-categories}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   490
\label{ss:ncat-examples}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   491
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   492
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   493
We now describe several classes of examples of $n$-categories satisfying our axioms.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   494
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   495
\begin{example}[Maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   496
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   497
\label{ex:maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   498
Fix a `target space' $T$, any topological space. We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   499
For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   500
all continuous maps from $X$ to $T$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   501
For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   502
homotopies fixed on $\bd X$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   503
(Note that homotopy invariance implies isotopy invariance.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   504
For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   505
be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   506
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   507
Recall we described a system of fields and local relations based on maps to $T$ in Example \ref{ex:maps-to-a-space(fields)} above. Constructing a system of fields from $\pi_{\leq n}(T)$ recovers that example.
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   508
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   509
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   510
\begin{example}[Maps to a space, with a fiber]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   511
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   512
\label{ex:maps-to-a-space-with-a-fiber}%
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   513
We can modify the example above, by fixing a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   514
closed $m$-manifold $F$, and defining $\pi^{\times F}_{\leq n}(T)(X) = \Maps(X \times F \to T)$, otherwise leaving the definition in Example \ref{ex:maps-to-a-space} unchanged. Taking $F$ to be a point recovers the previous case.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   515
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   516
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   517
\begin{example}[Linearized, twisted, maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   518
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   519
\label{ex:linearized-maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   520
We can linearize Examples \ref{ex:maps-to-a-space} and \ref{ex:maps-to-a-space-with-a-fiber} as follows.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   521
Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   522
(have in mind the trivial cocycle).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   523
For $X$ of dimension less than $n$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X)$ as before, ignoring $\alpha$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   524
For $X$ an $n$-ball and $c\in \Maps(\bdy X \times F \to T)$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X; c)$ to be
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   525
the $R$-module of finite linear combinations of continuous maps from $X\times F$ to $T$,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   526
modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   527
$h: X\times F\times I \to T$, then $a = \alpha(h)b$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   528
\nn{need to say something about fundamental classes, or choose $\alpha$ carefully}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   529
\end{example}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   530
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   531
The next example is only intended to be illustrative, as we don't specify which definition of a `traditional $n$-category' we intend. Further, most of these definitions don't even have an agreed-upon notion of `strong duality', which we assume here.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   532
\begin{example}[Traditional $n$-categories]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   533
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   534
\label{ex:traditional-n-categories}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   535
Given a `traditional $n$-category with strong duality' $C$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   536
define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   537
to be the set of all $C$-labeled sub cell complexes of $X$ (c.f. \S \ref{sec:fields}).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   538
For $X$ an $n$-ball and $c\in \cC(\bd X)$, define $\cC(X)$ to finite linear
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   539
combinations of $C$-labeled sub cell complexes of $X$
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   540
modulo the kernel of the evaluation map.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   541
Define a product morphism $a\times D$, for $D$ an $m$-ball, to be the product of the cell complex of $a$ with $D$,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   542
with each cell labelled by the $m$-th iterated identity morphism of the corresponding cell for $a$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   543
More generally, start with an $n{+}m$-category $C$ and a closed $m$-manifold $F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   544
Define $\cC(X)$, for $\dim(X) < n$,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   545
to be the set of all $C$-labeled sub cell complexes of $X\times F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   546
Define $\cC(X; c)$, for $X$ an $n$-ball,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   547
to be the dual Hilbert space $A(X\times F; c)$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   548
\nn{refer elsewhere for details?}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   549
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   550
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   551
Recall we described a system of fields and local relations based on a `traditional $n$-category' $C$ in Example \ref{ex:traditional-n-categories(fields)} above. Constructing a system of fields from $\cC$ recovers that example.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   552
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   553
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   554
Finally, we describe a version of the bordism $n$-category suitable to our definitions.
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   555
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   556
\nn{should also include example of ncats coming from TQFTs, or refer ahead to where we discuss that example}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   557
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   558
\newcommand{\Bord}{\operatorname{Bord}}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   559
\begin{example}[The bordism $n$-category, plain version]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   560
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   561
\label{ex:bordism-category}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   562
For a $k$-ball $X$, $k<n$, define $\Bord^n(X)$ to be the set of all $k$-dimensional
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   563
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   564
to $\bd X$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   565
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes (rel boundary) of such $n$-dimensional submanifolds;
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   566
we identify $W$ and $W'$ if $\bd W = \bd W'$ and there is a homeomorphism
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   567
$W \to W'$ which restricts to the identity on the boundary.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   568
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   569
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   570
%\nn{the next example might be an unnecessary distraction.  consider deleting it.}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   571
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   572
%\begin{example}[Variation on the above examples]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   573
%We could allow $F$ to have boundary and specify boundary conditions on $X\times \bd F$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   574
%for example product boundary conditions or take the union over all boundary conditions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   575
%%\nn{maybe should not emphasize this case, since it's ``better" in some sense
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   576
%%to think of these guys as affording a representation
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   577
%%of the $n{+}1$-category associated to $\bd F$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   578
%\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   579
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   580
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   581
%We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   582
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   583
\begin{example}[Chains of maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   584
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   585
\label{ex:chains-of-maps-to-a-space}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   586
We can modify Example \ref{ex:maps-to-a-space} above to define the fundamental $A_\infty$ $n$-category $\pi^\infty_{\le n}(T)$ of a topological space $T$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   587
For a $k$-ball $X$, with $k < n$, the set $\pi^\infty_{\leq n}(T)(X)$ is just $\Maps(X \to T)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   588
Define $\pi^\infty_{\leq n}(T)(X; c)$ for an $n$-ball $X$ and $c \in \pi^\infty_{\leq n}(T)(\bdy X)$ to be the chain complex
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   589
$$C_*(\Maps_c(X\times F \to T)),$$ where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   590
and $C_*$ denotes singular chains.
211
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 209
diff changeset
   591
\nn{maybe should also mention version where we enrich over spaces rather than chain complexes}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   592
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   593
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   594
See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   595
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   596
\begin{example}[Blob complexes of balls (with a fiber)]
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   597
\rm
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   598
\label{ex:blob-complexes-of-balls}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   599
Fix an $n-k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   600
We will define an $A_\infty$ $k$-category $\cC$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   601
When $X$ is a $m$-ball, with $m<k$, define $\cC(X) = \cE(X\times F)$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   602
When $X$ is an $k$-ball,
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   603
define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   604
where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   605
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   606
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   607
This example will be essential for Theorem \ref{product_thm} below, which allows us to compute the blob complex of a product. Notice that with $F$ a point, the above example is a construction turning a topological $n$-category $\cC$ into an $A_\infty$ $n$-category which we'll denote by $\bc_*(\cC)$. We think of this as providing a `free resolution' of the topological $n$-category. \todo{Say more here!} In fact, there is also a trivial, but mostly uninteresting, way to do this: we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, and take $\CD{B}$ to act trivially. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   608
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   609
Be careful that the `free resolution' of the topological $n$-category $\pi_{\leq n}(T)$ is not the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$. It's easy to see that with $n=0$, the corresponding system of fields is just linear combinations of connected components of $T$, and the local relations are trivial. There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   610
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   611
\begin{example}[The bordism $n$-category, $A_\infty$ version]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   612
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   613
\label{ex:bordism-category-ainf}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   614
blah blah \nn{to do...}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   615
\end{example}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   616
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   617
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   618
\begin{example}[$E_n$ algebras]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   619
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   620
\label{ex:e-n-alg}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   621
Let $\cE\cB_n$ be the operad of smooth embeddings of $k$ (little)
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   622
copies of the standard $n$-ball $B^n$ into another (big) copy of $B^n$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   623
The operad $\cE\cB_n$ is homotopy equivalent to the standard framed little $n$-ball operad.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   624
(By peeling the little balls, we see that both are homotopic to the space of $k$ framed points
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   625
in $B^n$.)
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   626
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   627
Let $A$ be an $\cE\cB_n$-algebra.
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   628
We will define an $A_\infty$ $n$-category $\cC^A$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   629
\nn{...}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   630
\end{example}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   631
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   632
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   633
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   634
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   635
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   636
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   637
%\subsection{From $n$-categories to systems of fields}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   638
\subsection{From balls to manifolds}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   639
\label{ss:ncat_fields} \label{ss:ncat-coend}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   640
In this section we describe how to extend an $n$-category $\cC$ as described above (of either the plain or $A_\infty$ variety) to an invariant of manifolds, which we denote by $\cl{\cC}$. This extension is a certain colimit, and we've chosen the notation to remind you of this.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   641
That is, we show that functors $\cC_k$ satisfying the axioms above have a canonical extension 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   642
from $k$-balls to arbitrary $k$-manifolds.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   643
In the case of plain $n$-categories, this construction factors into a construction of a system of fields and local relations, followed by the usual TQFT definition of a vector space invariant of manifolds of Definition \ref{defn:TQFT-invariant}.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   644
For an $A_\infty$ $n$-category, $\cl{\cC}$ is defined using a homotopy colimit instead. Recall that we can take a plain $n$-category $\cC$ and pass to the `free resolution', an $A_\infty$ $n$-category $\bc_*(\cC)$, by computing the blob complex of balls (recall Example \ref{ex:blob-complexes-of-balls} above). We will show in Corollary \ref{cor:new-old} below that the homotopy colimit invariant for a manifold $M$ associated to this $A_\infty$ $n$-category is actually the same as the original blob complex  for $M$ with coefficients in $\cC$.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   645
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   646
We will first define the `cell-decomposition' poset $\cell(W)$ for any $k$-manifold $W$, for $1 \leq k \leq n$. 
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   647
An $n$-category $\cC$ provides a functor from this poset to the category of sets, and we  will define $\cC(W)$ as a suitable colimit (or homotopy colimit in the $A_\infty$ case) of this functor. 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   648
We'll later give a more explicit description of this colimit. In the case that the $n$-category $\cC$ is enriched (e.g. associates vector spaces or chain complexes to $n$-manifolds with boundary data), then the resulting colimit is also enriched, that is, the set associated to $W$ splits into subsets according to boundary data, and each of these subsets has the appropriate structure (e.g. a vector space or chain complex).
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   649
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   650
\begin{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   651
Say that a `permissible decomposition' of $W$ is a cell decomposition
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   652
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   653
	W = \bigcup_a X_a ,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   654
\]
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   655
where each closed top-dimensional cell $X_a$ is an embedded $k$-ball.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   656
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   657
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   658
of $y$, or write $x \le y$, if each $k$-ball of $y$ is a union of $k$-balls of $x$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   659
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   660
The category $\cell(W)$ has objects the permissible decompositions of $W$, and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   661
See Figure \ref{partofJfig} for an example.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   662
\end{defn}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   663
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   664
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   665
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   666
\mathfig{.63}{ncat/zz2}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   667
\end{equation*}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   668
\caption{A small part of $\cell(W)$}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   669
\label{partofJfig}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   670
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   671
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   672
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   673
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   674
An $n$-category $\cC$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   675
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   676
(possibly with additional structure if $k=n$).
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   677
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   678
and, as described above, we have a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   679
are splittable along this decomposition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   680
%For a $k$-cell $X$ in a cell composition of $W$, we can consider the `splittable fields' $\cC(X)_{\bdy X}$, the subset of $\cC(X)$ consisting of fields which are splittable with respect to each boundary $k-1$-cell.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   681
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   682
\begin{defn}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   683
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   684
For a decomposition $x = \bigcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   685
\begin{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   686
\label{eq:psi-C}
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   687
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   688
\end{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   689
where the restrictions to the various pieces of shared boundaries amongst the cells
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   690
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   691
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   692
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   693
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   694
When the $n$-category $\cC$ is enriched in some symmetric monoidal category $(A,\boxtimes)$, and $W$ is a
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   695
closed $n$-manifold, the functor $\psi_{\cC;W}$ has target $A$ and
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   696
we replace the cartesian product of sets appearing in Equation \eqref{eq:psi-C} with the monoidal product $\boxtimes$. (Moreover, $\psi_{\cC;W}(x)$ might be a subobject, rather than a subset, of the product.)
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   697
Similar things are true if $W$ is an $n$-manifold with non-empty boundary and we
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   698
fix a field on $\bd W$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   699
(i.e. fix an element of the colimit associated to $\bd W$).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   700
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   701
Finally, we construct $\cC(W)$ as the appropriate colimit of $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   702
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   703
\begin{defn}[System of fields functor]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   704
If $\cC$ is an $n$-category enriched in sets or vector spaces, $\cC(W)$ is the usual colimit of the functor $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   705
That is, for each decomposition $x$ there is a map
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   706
$\psi_{\cC;W}(x)\to \cC(W)$, these maps are compatible with the refinement maps
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   707
above, and $\cC(W)$ is universal with respect to these properties.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   708
\end{defn}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   709
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   710
\begin{defn}[System of fields functor, $A_\infty$ case]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   711
When $\cC$ is an $A_\infty$ $n$-category, $\cC(W)$ for $W$ a $k$-manifold with $k < n$ is defined as above, as the colimit of $\psi_{\cC;W}$. When $W$ is an $n$-manifold, the chain complex $\cC(W)$ is the homotopy colimit of the functor $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   712
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   713
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   714
We can specify boundary data $c \in \cC(\bdy W)$, and define functors $\psi_{\cC;W,c}$ with values the subsets of those of $\psi_{\cC;W}$ which agree with $c$ on the boundary of $W$.
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
   715
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   716
We now give a more concrete description of the colimit in each case. If $\cC$ is enriched over vector spaces, and $W$ is an $n$-manifold, we can take the vector space $\cC(W,c)$ to be the direct sum over all permissible decompositions of $W$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   717
\begin{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   718
	\cC(W,c) = \left( \bigoplus_x \psi_{\cC;W,c}(x)\right) \big/ K
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   719
\end{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   720
where $K$ is the vector space spanned by elements $a - g(a)$, with
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   721
$a\in \psi_{\cC;W,c}(x)$ for some decomposition $x$, and $g: \psi_{\cC;W,c}(x)
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   722
\to \psi_{\cC;W,c}(y)$ is value of $\psi_{\cC;W,c}$ on some antirefinement $x \leq y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   723
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   724
In the $A_\infty$ case, enriched over chain complexes, the concrete description of the homotopy colimit
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   725
is more involved.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   726
%\nn{should probably rewrite this to be compatible with some standard reference}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   727
Define an $m$-sequence in $W$ to be a sequence $x_0 \le x_1 \le \dots \le x_m$ of permissible decompositions of $W$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   728
Such sequences (for all $m$) form a simplicial set in $\cell(W)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   729
Define $V$ as a vector space via
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   730
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   731
	V = \bigoplus_{(x_i)} \psi_{\cC;W}(x_0)[m] ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   732
\]
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   733
where the sum is over all $m$-sequences $(x_i)$ and all $m$, and each summand is degree shifted by $m$. (Our homological conventions are non-standard: if a complex $U$ is concentrated in degree $0$, the complex $U[m]$ is concentrated in degree $m$.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   734
We endow $V$ with a differential which is the sum of the differential of the $\psi_{\cC;W}(x_0)$
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   735
summands plus another term using the differential of the simplicial set of $m$-sequences.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   736
More specifically, if $(a, \bar{x})$ denotes an element in the $\bar{x}$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   737
summand of $V$ (with $\bar{x} = (x_0,\dots,x_k)$), define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   738
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   739
	\bd (a, \bar{x}) = (\bd a, \bar{x}) + (-1)^{\deg{a}} (g(a), d_0(\bar{x})) + (-1)^{\deg{a}} \sum_{j=1}^k (-1)^{j} (a, d_j(\bar{x})) ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   740
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   741
where $d_j(\bar{x}) = (x_0,\dots,x_{j-1},x_{j+1},\dots,x_k)$ and $g: \psi_\cC(x_0)\to \psi_\cC(x_1)$
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   742
is the usual gluing map coming from the antirefinement $x_0 \le x_1$.
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   743
\nn{need to say this better}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   744
\nn{maybe mention that there is a version that emphasizes minimal gluings (antirefinements) which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   745
combine only two balls at a time; for $n=1$ this version will lead to usual definition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   746
of $A_\infty$ category}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   747
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   748
We will call $m$ the filtration degree of the complex.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   749
We can think of this construction as starting with a disjoint copy of a complex for each
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   750
permissible decomposition (filtration degree 0).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   751
Then we glue these together with mapping cylinders coming from gluing maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   752
(filtration degree 1).
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   753
Then we kill the extra homology we just introduced with mapping cylinders between the mapping cylinders (filtration degree 2), and so on.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
   754
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   755
$\cC(W)$ is functorial with respect to homeomorphisms of $k$-manifolds.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   756
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   757
It is easy to see that
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   758
there are well-defined maps $\cC(W)\to\cC(\bd W)$, and that these maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   759
comprise a natural transformation of functors.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   760
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   761
\nn{need to finish explaining why we have a system of fields;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   762
need to say more about ``homological" fields? 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   763
(actions of homeomorphisms);
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   764
define $k$-cat $\cC(\cdot\times W)$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   765
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   766
\subsection{Modules}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   767
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
   768
Next we define plain and $A_\infty$ $n$-category modules.
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   769
The definition will be very similar to that of $n$-categories,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   770
but with $k$-balls replaced by {\it marked $k$-balls,} defined below.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   771
\nn{** need to make sure all revisions of $n$-cat def are also made to module def.}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   772
\nn{in particular, need to to get rid of the ``hemisphere axiom"}
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   773
%\nn{should they be called $n$-modules instead of just modules?  probably not, but worth considering.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
   774
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   775
Our motivating example comes from an $(m{-}n{+}1)$-dimensional manifold $W$ with boundary
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   776
in the context of an $m{+}1$-dimensional TQFT.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   777
Such a $W$ gives rise to a module for the $n$-category associated to $\bd W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   778
This will be explained in more detail as we present the axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   779
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
   780
\nn{should also develop $\pi_{\le n}(T, S)$ as a module for $\pi_{\le n}(T)$, where $S\sub T$.}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
   781
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   782
Throughout, we fix an $n$-category $\cC$. For all but one axiom, it doesn't matter whether $\cC$ is a topological $n$-category or an $A_\infty$ $n$-category. We state the final axiom, on actions of homeomorphisms, differently in the two cases.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   783
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   784
Define a {\it marked $k$-ball} to be a pair $(B, N)$ homeomorphic to the pair
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   785
$$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   786
We call $B$ the ball and $N$ the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   787
A homeomorphism between marked $k$-balls is a homeomorphism of balls which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   788
restricts to a homeomorphism of markings.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   789
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   790
\mmpar{Module axiom 1}{Module morphisms}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   791
{For each $0 \le k \le n$, we have a functor $\cM_k$ from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   792
the category of marked $k$-balls and 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   793
homeomorphisms to the category of sets and bijections.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   794
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   795
(As with $n$-categories, we will usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   796
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   797
For example, let $\cD$ be the $m{+}1$-dimensional TQFT which assigns to a $k$-manifold $N$ the set 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   798
of maps from $N$ to $T$, modulo homotopy (and possibly linearized) if $k=m$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   799
Let $W$ be an $(m{-}n{+}1)$-dimensional manifold with boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   800
Let $\cC$ be the $n$-category with $\cC(X) \deq \cD(X\times \bd W)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   801
Let $\cM(B, N) \deq \cD((B\times \bd W)\cup (N\times W))$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   802
(The union is along $N\times \bd W$.)
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   803
(If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   804
the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   805
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
   806
\begin{figure}[!ht]
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
   807
$$\mathfig{.8}{ncat/boundary-collar}$$
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
   808
\caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
   809
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   810
Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   811
Call such a thing a {marked $k{-}1$-hemisphere}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   812
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   813
\mmpar{Module axiom 2}{Module boundaries (hemispheres)}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   814
{For each $0 \le k \le n-1$, we have a functor $\cM_k$ from 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   815
the category of marked $k$-hemispheres and 
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   816
homeomorphisms to the category of sets and bijections.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   817
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   818
In our example, let $\cM(H) \deq \cD(H\times\bd W \cup \bd H\times W)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   819
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   820
\mmpar{Module axiom 3}{Module boundaries (maps)}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   821
{For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cM(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   822
These maps, for various $M$, comprise a natural transformation of functors.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   823
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   824
Given $c\in\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   825
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   826
If the $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   827
then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   828
and $c\in \cC(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   829
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   830
\mmpar{Module axiom 4}{Boundary from domain and range}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   831
{Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k$-hemisphere ($0\le k\le n-1$),
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   832
$M_i$ is a marked $k$-ball, and $E = M_1\cap M_2$ is a marked $k{-}1$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   833
Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   834
two maps $\bd: \cM(M_i)\to \cM(E)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   835
Then (axiom) we have an injective map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   836
\[
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   837
	\gl_E : \cM(M_1) \times_{\cM(E)} \cM(M_2) \hookrightarrow \cM(H)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   838
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   839
which is natural with respect to the actions of homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   840
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   841
Let $\cM(H)_E$ denote the image of $\gl_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   842
We will refer to elements of $\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   843
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   844
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
   845
\mmpar{Module axiom 5}{Module to category restrictions}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   846
{For each marked $k$-hemisphere $H$ there is a restriction map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   847
$\cM(H)\to \cC(H)$.  
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   848
($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   849
These maps comprise a natural transformation of functors.}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   850
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   851
Note that combining the various boundary and restriction maps above
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   852
(for both modules and $n$-categories)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   853
we have for each marked $k$-ball $(B, N)$ and each $k{-}1$-ball $Y\sub \bd B \setmin N$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   854
a natural map from a subset of $\cM(B, N)$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   855
The subset is the subset of morphisms which are appropriately splittable (transverse to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   856
cutting submanifolds).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   857
This fact will be used below.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   858
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   859
In our example, the various restriction and gluing maps above come from
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   860
restricting and gluing maps into $T$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   861
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
   862
We require two sorts of composition (gluing) for modules, corresponding to two ways
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   863
of splitting a marked $k$-ball into two (marked or plain) $k$-balls.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   864
(See Figure \ref{zzz3}.)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   865
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   866
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   867
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   868
\mathfig{.4}{ncat/zz3}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   869
\end{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   870
\caption{Module composition (top); $n$-category action (bottom).}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   871
\label{zzz3}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   872
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   873
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   874
First, we can compose two module morphisms to get another module morphism.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   875
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   876
\mmpar{Module axiom 6}{Module composition}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   877
{Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   878
and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   879
Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   880
Note that each of $M$, $M_1$ and $M_2$ has its boundary split into two marked $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   881
We have restriction (domain or range) maps $\cM(M_i)_E \to \cM(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   882
Let $\cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   883
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   884
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   885
	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   886
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   887
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   888
to the intersection of the boundaries of $M$ and $M_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   889
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   890
(For $k=n$, see below.)}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   891
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   892
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   893
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   894
Second, we can compose an $n$-category morphism with a module morphism to get another
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   895
module morphism.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   896
We'll call this the action map to distinguish it from the other kind of composition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   897
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   898
\mmpar{Module axiom 7}{$n$-category action}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   899
{Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   900
$X$ is a plain $k$-ball,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   901
and $Y = X\cap M'$ is a $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   902
Let $E = \bd Y$, which is a $k{-}2$-sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   903
We have restriction maps $\cM(M')_E \to \cC(Y)$ and $\cC(X)_E\to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   904
Let $\cC(X)_E \times_{\cC(Y)} \cM(M')_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   905
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   906
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   907
	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   908
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   909
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   910
to the intersection of the boundaries of $X$ and $M'$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   911
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   912
(For $k=n$, see below.)}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   913
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   914
\mmpar{Module axiom 8}{Strict associativity}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   915
{The composition and action maps above are strictly associative.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   916
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   917
Note that the above associativity axiom applies to mixtures of module composition,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   918
action maps and $n$-category composition.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   919
See Figure \ref{zzz1b}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   920
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   921
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   922
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   923
\mathfig{0.49}{ncat/zz0} \mathfig{0.49}{ncat/zz1}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   924
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   925
\caption{Two examples of mixed associativity}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   926
\label{zzz1b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   927
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   928
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   929
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   930
The above three axioms are equivalent to the following axiom,
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   931
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   932
\nn{need figure for this}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   933
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   934
\xxpar{Module multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   935
{Given any decomposition 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   936
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   937
	M =  X_1 \cup\cdots\cup X_p \cup M_1\cup\cdots\cup M_q
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   938
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   939
of a marked $k$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   940
into small (marked and plain) $k$-balls $M_i$ and $X_j$, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   941
map from an appropriate subset (like a fibered product) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   942
of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   943
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   944
	\cC(X_1)\times\cdots\times\cC(X_p) \times \cM(M_1)\times\cdots\times\cM(M_q) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   945
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   946
to $\cM(M)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   947
and these various multifold composition maps satisfy an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   948
operad-type strict associativity condition.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   949
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   950
(The above operad-like structure is analogous to the swiss cheese operad
146
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 145
diff changeset
   951
\cite{MR1718089}.)
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   952
%\nn{need to double-check that this is true.}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   953
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   954
\mmpar{Module axiom 9}{Product/identity morphisms}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   955
{Let $M$ be a marked $k$-ball and $D$ be a plain $m$-ball, with $k+m \le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   956
Then we have a map $\cM(M)\to \cM(M\times D)$, usually denoted $a\mapsto a\times D$ for $a\in \cM(M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   957
If $f:M\to M'$ and $\tilde{f}:M\times D \to M'\times D'$ are maps such that the diagram
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   958
\[ \xymatrix{
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   959
	M\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & M'\times D' \ar[d]^{\pi} \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   960
	M \ar[r]^{f} & M'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   961
} \]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   962
commutes, then we have $\tilde{f}(a\times D) = f(a)\times D'$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   963
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
   964
\nn{Need to add compatibility with various things, as in the n-cat version of this axiom above.}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   965
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   966
\nn{postpone finalizing the above axiom until the n-cat version is finalized}
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   967
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   968
There are two alternatives for the next axiom, according whether we are defining
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   969
modules for plain $n$-categories or $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   970
In the plain case we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   971
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   972
\mmpar{Module axiom 10a}{Extended isotopy invariance in dimension $n$}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   973
{Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts
175
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 174
diff changeset
   974
to the identity on $\bd M$ and is extended isotopic (rel boundary) to the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   975
Then $f$ acts trivially on $\cM(M)$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   976
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   977
\nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   978
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   979
We emphasize that the $\bd M$ above means boundary in the marked $k$-ball sense.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   980
In other words, if $M = (B, N)$ then we require only that isotopies are fixed 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   981
on $\bd B \setmin N$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   982
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   983
For $A_\infty$ modules we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   984
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
   985
\mmpar{Module axiom 10b}{Families of homeomorphisms act}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   986
{For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   987
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   988
	C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   989
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   990
Here $C_*$ means singular chains and $\Homeo_\bd(M)$ is the space of homeomorphisms of $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   991
which fix $\bd M$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   992
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   993
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 225
diff changeset
   994
a diagram like the one in Proposition \ref{CHprop} commutes.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   995
\nn{repeat diagram here?}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   996
\nn{restate this with $\Homeo(M\to M')$?  what about boundary fixing property?}}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   997
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   998
\medskip
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   999
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1000
Note that the above axioms imply that an $n$-category module has the structure
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1001
of an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1002
More specifically, let $J$ be a marked 1-ball, and define $\cE(X)\deq \cM(X\times J)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1003
where $X$ is a $k$-ball or $k{-}1$-sphere and in the product $X\times J$ we pinch 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1004
above the non-marked boundary component of $J$.
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1005
(More specifically, we collapse $X\times P$ to a single point, where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1006
$P$ is the non-marked boundary component of $J$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1007
\nn{give figure for this?}
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1008
Then $\cE$ has the structure of an $n{-}1$-category.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1009
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1010
All marked $k$-balls are homeomorphic, unless $k = 1$ and our manifolds
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1011
are oriented or Spin (but not unoriented or $\text{Pin}_\pm$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1012
In this case ($k=1$ and oriented or Spin), there are two types
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1013
of marked 1-balls, call them left-marked and right-marked,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1014
and hence there are two types of modules, call them right modules and left modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1015
In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1016
there is no left/right module distinction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1017
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1018
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1019
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1020
We now give some examples of modules over topological and $A_\infty$ $n$-categories.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1021
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1022
\begin{example}[Examples from TQFTs]
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1023
\todo{}
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1024
\end{example}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1025
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1026
\begin{example}
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1027
Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all such maps modulo homotopies fixed on $\bdy B \setminus N$. This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}. Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1028
\end{example}
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1029
324
a20e2318cbb0 rewrite proof from gluing thm
Kevin Walker <kevin@canyon23.net>
parents: 319
diff changeset
  1030
\subsection{Modules as boundary labels (colimits for decorated manifolds)}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1031
\label{moddecss}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1032
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1033
Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$. Let $W$ be a $k$-manifold ($k\le n$),
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1034
let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1035
and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1036
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1037
%Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1038
%and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1039
%component $\bd_i W$ of $W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1040
%(More generally, each $\cN_i$ could label some codimension zero submanifold of $\bd W$.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1041
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1042
We will define a set $\cC(W, \cN)$ using a colimit construction similar to the one appearing in \S \ref{ss:ncat_fields} above.
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1043
(If $k = n$ and our $n$-categories are enriched, then
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1044
$\cC(W, \cN)$ will have additional structure; see below.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1045
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1046
Define a permissible decomposition of $W$ to be a decomposition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1047
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1048
	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1049
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1050
where each $X_a$ is a plain $k$-ball (disjoint from $\bd W$) and
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1051
each $M_{ib}$ is a marked $k$-ball intersecting $\bd_i W$,
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1052
with $M_{ib}\cap Y_i$ being the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1053
(See Figure \ref{mblabel}.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1054
\begin{figure}[!ht]\begin{equation*}
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1055
\mathfig{.4}{ncat/mblabel}
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1056
\end{equation*}\caption{A permissible decomposition of a manifold
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1057
whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$. Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}\end{figure}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1058
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1059
of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1060
This defines a partial ordering $\cell(W)$, which we will think of as a category.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1061
(The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1062
morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1063
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1064
The collection of modules $\cN$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1065
a functor $\psi_\cN$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1066
(possibly with additional structure if $k=n$).
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1067
For a decomposition $x = (X_a, M_{ib})$ in $\cell(W)$, define $\psi_\cN(x)$ to be the subset
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1068
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1069
	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1070
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1071
such that the restrictions to the various pieces of shared boundaries amongst the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1072
$X_a$ and $M_{ib}$ all agree.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1073
(That is, the fibered product over the boundary maps.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1074
If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1075
via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1076
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1077
We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1078
(As usual, if $k=n$ and we are in the $A_\infty$ case, then ``colimit" means
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1079
homotopy colimit.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1080
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1081
If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1082
$\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1083
$D\times Y_i \sub \bd(D\times W)$. It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1084
has the structure of an $n{-}k$-category, which we call $\cT(W, \cN)(D)$.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1085
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1086
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1087
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1088
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1089
We will use a simple special case of the above 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1090
construction to define tensor products 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1091
of modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1092
Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1093
(If $k=1$ and our manifolds are oriented, then one should be 
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1094
a left module and the other a right module.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1095
Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1096
Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1097
$n{-}1$-category $\cT(J, \{\cM_1, \cM_2\})$. This of course depends (functorially)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1098
on the choice of 1-ball $J$.
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1099
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1100
We will define a more general self tensor product (categorified coend) below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1102
%\nn{what about self tensor products /coends ?}
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1103
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1104
\nn{maybe ``tensor product" is not the best name?}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1105
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1106
%\nn{start with (less general) tensor products; maybe change this later}
106
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 105
diff changeset
  1107
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1109
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1110
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1111
\subsection{Morphisms of $A_\infty$ $1$-category modules}
288
6c1b3c954c7e more deligne.tex
Kevin Walker <kevin@canyon23.net>
parents: 286
diff changeset
  1112
\label{ss:module-morphisms}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1113
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1114
In order to state and prove our version of the higher dimensional Deligne conjecture
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1115
(Section \ref{sec:deligne}),
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1116
we need to define morphisms of $A_\infty$ $1$-category modules and establish
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1117
some of their elementary properties.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1118
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1119
To motivate the definitions which follow, consider algebras $A$ and $B$,  right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1120
\begin{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1121
	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1122
	f &\mapsto& [x \mapsto f(x\ot -)] \\
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
  1123
	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1124
\end{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1125
If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1126
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1127
	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1128
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1129
We will establish the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1130
and modules $\cM_\cC$ and $_\cC\cN$,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1131
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1132
	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1133
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1134
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1135
In the next few paragraphs we define the objects appearing in the above equation:
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1136
$\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1137
$\hom_\cC$.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1138
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1139
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1140
\def\olD{{\overline D}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1141
\def\cbar{{\bar c}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1142
In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1143
for general $n$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1144
For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1145
and their gluings (antirefinements).
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1146
(This tensor product depends functorially on the choice of $J$.)
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1147
To a subdivision $D$
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1148
\[
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1149
	J = I_1\cup \cdots\cup I_p
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1150
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1151
we associate the chain complex
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1152
\[
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1153
	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1154
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1155
To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1156
module actions of $\cC$ on $\cM$ and $\cN$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1157
The underlying graded vector space of the homotopy colimit is
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1158
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1159
	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1160
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1161
where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1162
runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1163
We will denote an element of the summand indexed by $\olD$ by
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1164
$\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1165
The boundary map is given by
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1166
\begin{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1167
	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1168
	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1169
	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1170
\end{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1171
where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1172
boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1173
and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1174
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1175
$(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1176
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1177
	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1178
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1179
where $(\psi(D_0)[l])^*$ denotes the linear dual.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1180
The boundary is given by
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1181
\begin{align}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1182
\label{eq:tensor-product-boundary}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1183
	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1184
						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1185
			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1186
\end{align}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1187
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1188
Next we define the dual module $(_\cC\cN)^*$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1189
This will depend on a choice of interval $J$, just as the tensor product did.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1190
Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1191
to chain complexes.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1192
Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1193
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1194
	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1195
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1196
where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1197
to the right-marked interval $J\setmin K$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1198
This extends to a functor from all left-marked intervals (not just those contained in $J$).
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1199
\nn{need to say more here; not obvious how homeomorphisms act}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1200
It's easy to verify the remaining module axioms.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1201
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1202
Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1203
as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1204
Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1205
Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1206
Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1207
Then for each such $\olD$ we have a degree $l$ map
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1208
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1209
	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1210
	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1211
\end{eqnarray*}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1212
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1213
We are almost ready to give the definition of morphisms between arbitrary modules
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1214
$\cX_\cC$ and $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1215
Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1216
To fix this, we define subdivisions as antirefinements of left-marked intervals.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1217
Subdivisions are just the obvious thing, but antirefinements are defined to mimic
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1218
the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1219
omitted.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1220
More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1221
gluing subintervals together and/or omitting some of the rightmost subintervals.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1222
(See Figure \ref{fig:lmar}.)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1223
\begin{figure}[t]\begin{equation*}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1224
\mathfig{.6}{tempkw/left-marked-antirefinements}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1225
\end{equation*}\caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1226
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1227
Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1228
The underlying vector space is 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1229
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1230
	\prod_l \prod_{\olD} \hom[l]\left(
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1231
				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1232
							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1233
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1234
where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1235
(but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1236
$\hom[l](- \to -)$ means graded linear maps of degree $l$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1237
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1238
\nn{small issue (pun intended): 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1239
the above is a vector space only if the class of subdivisions is a set, e.g. only if
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1240
all of our left-marked intervals are contained in some universal interval (like $J$ above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1241
perhaps we should give another version of the definition in terms of natural transformations of functors.}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1242
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1243
Abusing notation slightly, we will denote elements of the above space by $g$, with
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1244
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1245
	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1246
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1247
For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1248
which are dropped off the right side.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1249
(Either $\cbar'$ or $\cbar''$ might be empty.)
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1250
\nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1251
Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1252
we have
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1253
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1254
	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1255
	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1256
\end{eqnarray*}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1257
\nn{put in signs, rearrange terms to match order in previous formulas}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1258
Here $\gl$ denotes the module action in $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1259
This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1260
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1261
Note that if $\bd g = 0$, then each 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1262
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1263
	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1264
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1265
constitutes a null homotopy of
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1266
$g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1267
should be interpreted as above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1268
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1269
Define a {\it naive morphism} 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1270
\nn{should consider other names for this}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1271
of modules to be a collection of {\it chain} maps
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1272
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1273
	h_K : \cX(K)\to \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1274
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1275
for each left-marked interval $K$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1276
These are required to commute with gluing;
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1277
for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes:
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1278
\[ \xymatrix{
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1279
	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1280
							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1281
								\ar[d]^{\gl} \\
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1282
	\cX(K) \ar[r]^{h_{K}} & \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1283
} \]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1284
Given such an $h$ we can construct a non-naive morphism $g$, with $\bd g = 0$, as follows.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1285
Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1286
If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1287
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1288
	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1289
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1290
Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1291
If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1292
If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1293
that each $h_K$ is a chain map.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1294
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1295
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1296
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1297
Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1298
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1299
	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1300
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1301
\nn{this is fairly straightforward, but the details are messy enough that I'm inclined
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1302
to postpone writing it up, in the hopes that I'll think of a better way to organize things.}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1303
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1304
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1305
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1306
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1307
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1308
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1309
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1310
\nn{do we need to say anything about composing morphisms of modules?}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1311
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1312
\nn{should we define functors between $n$-cats in a similar way?}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1313
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1314
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1315
\nn{...}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1316
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1317
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1318
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1319
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1320
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1321
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1322
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1323
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1324
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1325
\subsection{The $n{+}1$-category of sphere modules}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 211
diff changeset
  1326
\label{ssec:spherecat}
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1327
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1328
In this subsection we define an $n{+}1$-category $\cS$ of ``sphere modules" 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1329
whose objects are $n$-categories.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1330
When $n=2$
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1331
this is a version of the familiar algebras-bimodules-intertwiners $2$-category.
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1332
While it is clearly appropriate to call an $S^0$ module a bimodule,
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1333
but this is much less true for higher dimensional spheres, 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1334
so we prefer the term ``sphere module" for the general case.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1335
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1336
The $0$- through $n$-dimensional parts of $\cC$ are various sorts of modules, and we describe
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1337
these first.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1338
The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1339
of (garden-variety) $1$-category modules associated to decorated $n$-balls.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1340
We will see below that in order for these $n{+}1$-morphisms to satisfy all of
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1341
the duality requirements of an $n{+}1$-category, we will have to assume
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1342
that our $n$-categories and modules have non-degenerate inner products.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1343
(In other words, we need to assume some extra duality on the $n$-categories and modules.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1344
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1345
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1346
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1347
Our first task is to define an $n$-category $m$-sphere module, for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1348
These will be defined in terms of certain classes of marked balls, very similarly
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1349
to the definition of $n$-category modules above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1350
(This, in turn, is very similar to our definition of $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1351
Because of this similarity, we only sketch the definitions below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1352
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1353
We start with $0$-sphere modules, which also could reasonably be called (categorified) bimodules.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1354
(For $n=1$ they are precisely bimodules in the usual, uncategorified sense.)
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1355
Define a $0$-marked $k$-ball $(X, M)$, $1\le k \le n$, to be a pair homeomorphic to the standard
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1356
$(B^k, B^{k-1})$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1357
See Figure \ref{feb21a}.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1358
Another way to say this is that $(X, M)$ is homeomorphic to $B^{k-1}\times([-1,1], \{0\})$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1359
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1360
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1361
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1362
\mathfig{.85}{tempkw/feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1363
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1364
\caption{0-marked 1-ball and 0-marked 2-ball}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1365
\label{feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1366
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1367
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1368
The $0$-marked balls can be cut into smaller balls in various ways. We only consider those decompositions in which the smaller balls are either
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1369
 $0$-marked (i.e. intersect the $0$-marking of the large ball in a disc) or plain (don't intersect the $0$-marking of the large ball).
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1370
We can also take the boundary of a $0$-marked ball, which is $0$-marked sphere.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1371
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1372
Fix $n$-categories $\cA$ and $\cB$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1373
These will label the two halves of a $0$-marked $k$-ball.
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1374
The $0$-sphere module we define next will depend on $\cA$ and $\cB$ 
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1375
(it's an $\cA$-$\cB$ bimodule), but we will suppress that from the notation.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1376
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1377
An $n$-category $0$-sphere module $\cM$ is a collection of functors $\cM_k$ from the category
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1378
of $0$-marked $k$-balls, $1\le k \le n$,
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1379
(with the two halves labeled by $\cA$ and $\cB$) to the category of sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1380
If $k=n$ these sets should be enriched to the extent $\cA$ and $\cB$ are.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1381
Given a decomposition of a $0$-marked $k$-ball $X$ into smaller balls $X_i$, we have
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1382
morphism sets $\cA_k(X_i)$ (if $X_i$ lies on the $\cA$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1383
or $\cB_k(X_i)$ (if $X_i$ lies on the $\cB$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1384
or $\cM_k(X_i)$ (if $X_i$ intersects the marking and is therefore a smaller 0-marked ball).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1385
Corresponding to this decomposition we have an action and/or composition map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1386
from the product of these various sets into $\cM(X)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1387
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1388
\medskip
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1389
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1390
Part of the structure of an $n$-category 0-sphere module $\cM$  is captured by saying it is
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1391
a collection $\cD^{ab}$ of $n{-}1$-categories, indexed by pairs $(a, b)$ of objects (0-morphisms)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1392
of $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1393
Let $J$ be some standard 0-marked 1-ball (i.e.\ an interval with a marked point in its interior).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1394
Given a $j$-ball $X$, $0\le j\le n-1$, we define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1395
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1396
	\cD(X) \deq \cM(X\times J) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1397
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1398
The product is pinched over the boundary of $J$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1399
The set $\cD$ breaks into ``blocks" according to the restrictions to the pinched points of $X\times J$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1400
(see Figure \ref{feb21b}).
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1401
These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$.
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1402
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1403
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1404
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1405
\mathfig{1}{tempkw/feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1406
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1407
\caption{The pinched product $X\times J$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1408
\label{feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1409
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1410
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1411
More generally, consider an interval with interior marked points, and with the complements
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1412
of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1413
by $\cA_i$-$\cA_{i+1}$ bimodules $\cM_i$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1414
(See Figure \ref{feb21c}.)
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1415
To this data we can apply the coend construction as in Subsection \ref{moddecss} above
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1416
to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1417
This amounts to a definition of taking tensor products of $0$-sphere module over $n$-categories.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1418
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1419
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1420
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1421
\mathfig{1}{tempkw/feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1422
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1423
\caption{Marked and labeled 1-manifolds}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1424
\label{feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1425
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1426
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1427
We could also similarly mark and label a circle, obtaining an $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1428
associated to the marked and labeled circle.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1429
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1430
If the circle is divided into two intervals, we can think of this $n{-}1$-category
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1431
as the 2-sided tensor product of the two bimodules associated to the two intervals.
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1432
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1433
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1434
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1435
Next we define $n$-category 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1436
These are just representations of (modules for) $n{-}1$-categories associated to marked and labeled 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1437
circles (1-spheres) which we just introduced.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1438
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1439
Equivalently, we can define 1-sphere modules in terms of 1-marked $k$-balls, $2\le k\le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1440
Fix a marked (and labeled) circle $S$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1441
Let $C(S)$ denote the cone of $S$, a marked 2-ball (Figure \ref{feb21d}).
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1442
\nn{I need to make up my mind whether marked things are always labeled too.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1443
For the time being, let's say they are.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1444
A 1-marked $k$-ball is anything homeomorphic to $B^j \times C(S)$, $0\le j\le n-2$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1445
where $B^j$ is the standard $j$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1446
1-marked $k$-balls can be decomposed in various ways into smaller balls, which are either 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1447
smaller 1-marked $k$-balls or the product of an unmarked ball with a marked interval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1448
We now proceed as in the above module definitions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1449
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1450
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1451
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1452
\mathfig{.4}{tempkw/feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1453
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1454
\caption{Cone on a marked circle}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1455
\label{feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1456
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1457
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1458
A $n$-category 1-sphere module is, among other things, an $n{-}2$-category $\cD$ with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1459
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1460
	\cD(X) \deq \cM(X\times C(S)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1461
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1462
The product is pinched over the boundary of $C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1463
$\cD$ breaks into ``blocks" according to the restriction to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1464
image of $\bd C(S) = S$ in $X\times C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1465
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1466
More generally, consider a 2-manifold $Y$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1467
(e.g.\ 2-ball or 2-sphere) marked by an embedded 1-complex $K$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1468
The components of $Y\setminus K$ are labeled by $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1469
the edges of $K$ are labeled by 0-sphere modules, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1470
and the 0-cells of $K$ are labeled by 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1471
We can now apply the coend construction and obtain an $n{-}2$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1472
If $Y$ has boundary then this $n{-}2$-category is a module for the $n{-}1$-manifold
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1473
associated to the (marked, labeled) boundary of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1474
In particular, if $\bd Y$ is a 1-sphere then we get a 1-sphere module as defined above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1475
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1476
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1477
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1478
It should now be clear how to define $n$-category $m$-sphere modules for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1479
For example, there is an $n{-}2$-category associated to a marked, labeled 2-sphere,
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1480
and a 2-sphere module is a representation of such an $n{-}2$-category.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1481
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1482
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1483
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1484
We can now define the $n$- or less dimensional part of our $n{+}1$-category $\cS$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1485
Choose some collection of $n$-categories, then choose some collections of bimodules for
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1486
these $n$-categories, then choose some collection of 1-sphere modules for the various
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1487
possible marked 1-spheres labeled by the $n$-categories and bimodules, and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1488
Let $L_i$ denote the collection of $i{-}1$-sphere modules we have chosen.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1489
(For convenience, we declare a $(-1)$-sphere module to be an $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1490
There is a wide range of possibilities.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1491
$L_0$ could contain infinitely many $n$-categories or just one.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1492
For each pair of $n$-categories in $L_0$, $L_1$ could contain no bimodules at all or 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1493
it could contain several.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1494
The only requirement is that each $k$-sphere module be a module for a $k$-sphere $n{-}k$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1495
constructed out of labels taken from $L_j$ for $j<k$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1496
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1497
We now define $\cS(X)$, for $X$ of dimension at most $n$, to be the set of all 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1498
cell-complexes $K$ embedded in $X$, with the codimension-$j$ parts of $(X, K)$ labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1499
by elements of $L_j$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1500
As described above, we can think of each decorated $k$-ball as defining a $k{-}1$-sphere module
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1501
for the $n{-}k{+}1$-category associated to its decorated boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1502
Thus the $k$-morphisms of $\cS$ (for $k\le n$) can be thought 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1503
of as $n$-category $k{-}1$-sphere modules 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1504
(generalizations of bimodules).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1505
On the other hand, we can equally think of the $k$-morphisms as decorations on $k$-balls, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1506
and from this (official) point of view it is clear that they satisfy all of the axioms of an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1507
$n{+}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1508
(All of the axioms for the less-than-$n{+}1$-dimensional part of an $n{+}1$-category, that is.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1509
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1510
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1511
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1512
Next we define the $n{+}1$-morphisms of $\cS$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1513
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1514
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1515
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1516
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1517
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1518
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1519
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1520
\nn{...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1521
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1522
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1523
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1524
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1525
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  1526
\nn{to be continued...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  1527
\medskip
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1528
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1529
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1530
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1531
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1532
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1533
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1534
Stuff that remains to be done (either below or in an appendix or in a separate section or in
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1535
a separate paper):
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1536
\begin{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1537
\item spell out what difference (if any) Top vs PL vs Smooth makes
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1538
\item discuss Morita equivalence
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1539
\item morphisms of modules; show that it's adjoint to tensor product
139
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 134
diff changeset
  1540
(need to define dual module for this)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 134
diff changeset
  1541
\item functors
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1542
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  1543
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  1544