text/ncat.tex
author Kevin Walker <kevin@canyon23.net>
Wed, 07 Jul 2010 08:47:50 -0600
changeset 419 a571e37cc68d
parent 418 a96f3d2ef852
child 421 a896ec294254
permissions -rw-r--r--
a few more ncat revisions
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
     4
\def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
312
5bb1cbe49c40 misc. minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 311
diff changeset
     6
\section{$n$-categories and their modules}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
\label{sec:ncats}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
     9
\subsection{Definition of $n$-categories}
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
    10
\label{ss:n-cat-def}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
    11
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
Before proceeding, we need more appropriate definitions of $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    13
$A_\infty$ $n$-categories, modules for these, and tensor products of these modules.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    14
(As is the case throughout this paper, by ``$n$-category" we mean some notion of
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    15
a ``weak" $n$-category with ``strong duality".)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    16
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    17
The definitions presented below tie the categories more closely to the topology
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    18
and avoid combinatorial questions about, for example, the minimal sufficient
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    19
collections of generalized associativity axioms; we prefer maximal sets of axioms to minimal sets.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    20
For examples of topological origin
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    21
(e.g.\ categories whose morphisms are maps into spaces or decorated balls), 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    22
it is easy to show that they
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    23
satisfy our axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    24
For examples of a more purely algebraic origin, one would typically need the combinatorial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    25
results that we have avoided here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    26
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    27
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    28
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    29
There are many existing definitions of $n$-categories, with various intended uses.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    30
In any such definition, there are sets of $k$-morphisms for each $0 \leq k \leq n$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    31
Generally, these sets are indexed by instances of a certain typical shape. 
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
    32
Some $n$-category definitions model $k$-morphisms on the standard bihedron (interval, bigon, and so on).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    33
Other definitions have a separate set of 1-morphisms for each interval $[0,l] \sub \r$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    34
a separate set of 2-morphisms for each rectangle $[0,l_1]\times [0,l_2] \sub \r^2$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    35
and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    36
(This allows for strict associativity.)
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    37
Still other definitions (see, for example, \cite{MR2094071})
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
model the $k$-morphisms on more complicated combinatorial polyhedra.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    39
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    40
For our definition, we will allow our $k$-morphisms to have any shape, so long as it is homeomorphic to the standard $k$-ball.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    41
Thus we associate a set of $k$-morphisms $\cC_k(X)$ to any $k$-manifold $X$ homeomorphic 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    42
to the standard $k$-ball.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    43
By ``a $k$-ball" we mean any $k$-manifold which is homeomorphic to the 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    44
standard $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    45
We {\it do not} assume that it is equipped with a 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    46
preferred homeomorphism to the standard $k$-ball, and the same applies to ``a $k$-sphere" below.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    47
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    48
Given a homeomorphism $f:X\to Y$ between $k$-balls (not necessarily fixed on 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    49
the boundary), we want a corresponding
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    50
bijection of sets $f:\cC(X)\to \cC(Y)$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    51
(This will imply ``strong duality", among other things.) Putting these together, we have
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    52
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    53
\begin{axiom}[Morphisms]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    54
\label{axiom:morphisms}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    55
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    56
the category of $k$-balls and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    57
homeomorphisms to the category of sets and bijections.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    58
\end{axiom}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    59
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    60
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    61
(Note: We usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    62
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    63
We are being deliberately vague about what flavor of $k$-balls
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    64
we are considering.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    65
They could be unoriented or oriented or Spin or $\mbox{Pin}_\pm$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    66
They could be topological or PL or smooth.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    67
%\nn{need to check whether this makes much difference}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
(If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
    69
to be fussier about corners and boundaries.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    70
For each flavor of manifold there is a corresponding flavor of $n$-category.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    71
For simplicity, we will concentrate on the case of PL unoriented manifolds.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    73
(The ambitious reader may want to keep in mind two other classes of balls.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    74
The first is balls equipped with a map to some other space $Y$ (c.f. \cite{MR2079378}). 
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    75
This will be used below to describe the blob complex of a fiber bundle with
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    76
base space $Y$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    77
The second is balls equipped with a section of the tangent bundle, or the frame
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    78
bundle (i.e.\ framed balls), or more generally some flag bundle associated to the tangent bundle.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    79
These can be used to define categories with less than the ``strong" duality we assume here,
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    80
though we will not develop that idea fully in this paper.)
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    81
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    82
Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    83
of morphisms).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    84
The 0-sphere is unusual among spheres in that it is disconnected.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    85
Correspondingly, for 1-morphisms it makes sense to distinguish between domain and range.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    86
(Actually, this is only true in the oriented case, with 1-morphisms parameterized
359
6224e50c9311 metric independence for homeo action (proof done now)
Kevin Walker <kevin@canyon23.net>
parents: 356
diff changeset
    87
by {\it oriented} 1-balls.)
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    88
For $k>1$ and in the presence of strong duality the division into domain and range makes less sense.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    89
For example, in a pivotal tensor category, there are natural isomorphisms $\Hom{}{A}{B \tensor C} \isoto \Hom{}{B^* \tensor A}{C}$, etc. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    90
(sometimes called ``Frobenius reciprocity''), which canonically identify all the morphism spaces which have the same boundary.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    91
We prefer to not make the distinction in the first place.
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    92
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    93
Instead, we will combine the domain and range into a single entity which we call the 
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    94
boundary of a morphism.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    95
Morphisms are modeled on balls, so their boundaries are modeled on spheres.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    96
In other words, we need to extend the functors $\cC_{k-1}$ from balls to spheres, for 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    97
$1\le k \le n$.
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
    98
At first it might seem that we need another axiom for this, but in fact once we have
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    99
all the axioms in this subsection for $0$ through $k-1$ we can use a colimit
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   100
construction, as described in Subsection \ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   101
to spheres (and any other manifolds):
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   102
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   103
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   104
\label{lem:spheres}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   105
For each $1 \le k \le n$, we have a functor $\cl{\cC}_{k-1}$ from 
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   106
the category of $k{-}1$-spheres and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   107
homeomorphisms to the category of sets and bijections.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   108
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   109
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   110
We postpone the proof of this result until after we've actually given all the axioms.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   111
Note that defining this functor for some $k$ only requires the data described in Axiom \ref{axiom:morphisms} at level $k$, 
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   112
along with the data described in the other axioms at lower levels. 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   113
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   114
%In fact, the functors for spheres are entirely determined by the functors for balls and the subsequent axioms. (In particular, $\cC(S^k)$ is the colimit of $\cC$ applied to decompositions of $S^k$ into balls.) However, it is easiest to think of it as additional data at this point.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   115
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   116
\begin{axiom}[Boundaries]\label{nca-boundary}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   117
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cl{\cC}_{k-1}(\bd X)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   118
These maps, for various $X$, comprise a natural transformation of functors.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   119
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   120
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   121
(Note that the first ``$\bd$" above is part of the data for the category, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
while the second is the ordinary boundary of manifolds.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   123
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   124
Given $c\in\cl{\cC}(\bd(X))$, we will write $\cC(X; c)$ for $\bd^{-1}(c)$, those morphisms with specified boundary $c$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   125
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
Most of the examples of $n$-categories we are interested in are enriched in the following sense.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   127
The various sets of $n$-morphisms $\cC(X; c)$, for all $n$-balls $X$ and
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   128
all $c\in \cl{\cC}(\bd X)$, have the structure of an object in some auxiliary symmetric monoidal category
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   129
(e.g.\ vector spaces, or modules over some ring, or chain complexes),
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   130
\nn{actually, need both disj-union/sub and product/tensor-product; what's the name for this sort of cat?}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
and all the structure maps of the $n$-category should be compatible with the auxiliary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   132
category structure.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   133
Note that this auxiliary structure is only in dimension $n$;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   134
$\cC(Y; c)$ is just a plain set if $\dim(Y) < n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   135
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   136
\medskip
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   137
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   138
(In order to simplify the exposition we have concentrated on the case of 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   139
unoriented PL manifolds and avoided the question of what exactly we mean by 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   140
the boundary a manifold with extra structure, such as an oriented manifold.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   141
In general, all manifolds of dimension less than $n$ should be equipped with the germ
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   142
of a thickening to dimension $n$, and this germ should carry whatever structure we have 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   143
on $n$-manifolds.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   144
In addition, lower dimensional manifolds should be equipped with a framing
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   145
of their normal bundle in the thickening; the framing keeps track of which
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   146
side (iterated) bounded manifolds lie on.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   147
For example, the boundary of an oriented $n$-ball
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   148
should be an $n{-}1$-sphere equipped with an orientation of its once stabilized tangent
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   149
bundle and a choice of direction in this bundle indicating
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   150
which side the $n$-ball lies on.)
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   151
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   152
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   153
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   154
We have just argued that the boundary of a morphism has no preferred splitting into
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   155
domain and range, but the converse meets with our approval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   156
That is, given compatible domain and range, we should be able to combine them into
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   157
the full boundary of a morphism.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   158
The following lemma will follow from the colimit construction used to define $\cl{\cC}_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   159
on spheres.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   161
\begin{lem}[Boundary from domain and range]
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   162
\label{lem:domain-and-range}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   163
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   164
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   165
Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the 
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   166
two maps $\bd: \cC(B_i)\to \cl{\cC}(E)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   167
Then we have an injective map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   168
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   169
	\gl_E : \cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2) \into \cl{\cC}(S)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   170
\]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   171
which is natural with respect to the actions of homeomorphisms.
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   172
(When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   173
becomes a normal product.)
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   174
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   175
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   176
\begin{figure}[!ht]
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   177
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   178
\begin{tikzpicture}[%every label/.style={green}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   179
]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   180
\node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   181
\node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   182
\draw (S) arc  (-90:90:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   183
\draw (N) arc  (90:270:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   184
\node[left] at (-1,1) {$B_1$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   185
\node[right] at (1,1) {$B_2$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   186
\end{tikzpicture}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   187
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   188
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   189
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   190
Note that we insist on injectivity above. 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   191
The lemma follows from Definition \ref{def:colim-fields} and Lemma \ref{lem:colim-injective}.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   192
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   193
Let $\cl{\cC}(S)_E$ denote the image of $\gl_E$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   194
We will refer to elements of $\cl{\cC}(S)_E$ as ``splittable along $E$" or ``transverse to $E$". 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   195
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   196
If $X$ is a $k$-ball and $E \sub \bd X$ splits $\bd X$ into two $k{-}1$-balls $B_1$ and $B_2$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   197
as above, then we define $\cC(X)_E = \bd^{-1}(\cl{\cC}(\bd X)_E)$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   198
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   199
We will call the projection $\cl{\cC}(S)_E \to \cC(B_i)$
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   200
a {\it restriction} map and write $\res_{B_i}(a)$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   201
(or simply $\res(a)$ when there is no ambiguity), for $a\in \cl{\cC}(S)_E$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   202
More generally, we also include under the rubric ``restriction map" the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   203
the boundary maps of Axiom \ref{nca-boundary} above,
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   204
another class of maps introduced after Axiom \ref{nca-assoc} below, as well as any composition
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   205
of restriction maps.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   206
In particular, we have restriction maps $\cC(X)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   207
($i = 1, 2$, notation from previous paragraph).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   208
These restriction maps can be thought of as 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   209
domain and range maps, relative to the choice of splitting $\bd X = B_1 \cup_E B_2$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   210
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   211
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   212
Next we consider composition of morphisms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   213
For $n$-categories which lack strong duality, one usually considers
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   214
$k$ different types of composition of $k$-morphisms, each associated to a different direction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   215
(For example, vertical and horizontal composition of 2-morphisms.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   216
In the presence of strong duality, these $k$ distinct compositions are subsumed into 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
one general type of composition which can be in any ``direction".
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   218
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   219
\begin{axiom}[Composition]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   220
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   221
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   222
Let $E = \bd Y$, which is a $k{-}2$-sphere.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   223
Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   224
We have restriction (domain or range) maps $\cC(B_i)_E \to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   225
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   226
We have a map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   227
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   228
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   229
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   230
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   231
to the intersection of the boundaries of $B$ and $B_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   232
If $k < n$ we require that $\gl_Y$ is injective.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   233
(For $k=n$, see below.)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   234
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   235
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   236
\begin{figure}[!ht]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   237
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   238
\begin{tikzpicture}[%every label/.style={green},
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   239
				x=1.5cm,y=1.5cm]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   240
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   241
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   242
\draw (S) arc  (-90:90:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   243
\draw (N) arc  (90:270:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   244
\draw (N) -- (S);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   245
\node[left] at (-1/4,1) {$B_1$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   246
\node[right] at (1/4,1) {$B_2$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   247
\node at (1/6,3/2)  {$Y$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   248
\end{tikzpicture}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   249
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   250
\caption{From two balls to one ball.}\label{blah5}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   251
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   252
\begin{axiom}[Strict associativity] \label{nca-assoc}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   253
The composition (gluing) maps above are strictly associative.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   254
\end{axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   255
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   256
\begin{figure}[!ht]
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   257
$$\mathfig{.65}{ncat/strict-associativity}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   258
\caption{An example of strict associativity.}\label{blah6}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   259
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   260
We'll use the notations  $a\bullet b$ as well as $a \cup b$ for the glued together field $\gl_Y(a, b)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   261
In the other direction, we will call the projection from $\cC(B)_E$ to $\cC(B_i)_E$ 
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   262
a restriction map (one of many types of map so called) and write $\res_{B_i}(a)$ for $a\in \cC(B)_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   263
%Compositions of boundary and restriction maps will also be called restriction maps.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   264
%For example, if $B$ is a $k$-ball and $Y\sub \bd B$ is a $k{-}1$-ball, there is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   265
%restriction map from $\cC(B)_{\bd Y}$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   266
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   267
We will write $\cC(B)_Y$ for the image of $\gl_Y$ in $\cC(B)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   268
We will call elements of $\cC(B)_Y$ morphisms which are 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   269
``splittable along $Y$'' or ``transverse to $Y$''.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   270
We have $\cC(B)_Y \sub \cC(B)_E \sub \cC(B)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   271
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   272
More generally, let $\alpha$ be a subdivision of a ball $X$ into smaller balls.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   273
Let $\cC(X)_\alpha \sub \cC(X)$ denote the image of the iterated gluing maps from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   274
the smaller balls to $X$.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   275
We  say that elements of $\cC(X)_\alpha$ are morphisms which are ``splittable along $\alpha$".
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   276
In situations where the subdivision is notationally anonymous, we will write
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   277
$\cC(X)\spl$ for the morphisms which are splittable along (a.k.a.\ transverse to)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   278
the unnamed subdivision.
335
9bf409eb5040 mostly finished inserting \cl
Scott Morrison <scott@tqft.net>
parents: 334
diff changeset
   279
If $\beta$ is a subdivision of $\bd X$, we define $\cC(X)_\beta \deq \bd\inv(\cl{\cC}(\bd X)_\beta)$;
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   280
this can also be denoted $\cC(X)\spl$ if the context contains an anonymous
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   281
subdivision of $\bd X$ and no competing subdivision of $X$.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   282
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   283
The above two composition axioms are equivalent to the following one,
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   284
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   285
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   286
\xxpar{Multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   287
{Given any decomposition $B = B_1\cup\cdots\cup B_m$ of a $k$-ball
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   288
into small $k$-balls, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   289
map from an appropriate subset (like a fibered product) 
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   290
of $\cC(B_1)\spl\times\cdots\times\cC(B_m)\spl$ to $\cC(B)\spl$,
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   291
and these various $m$-fold composition maps satisfy an
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   292
operad-type strict associativity condition (Figure \ref{fig:operad-composition}).}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   293
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   294
\begin{figure}[!ht]
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   295
$$\mathfig{.8}{ncat/operad-composition}$$
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   296
\caption{Operad composition and associativity}\label{fig:operad-composition}\end{figure}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   297
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   298
The next axiom is related to identity morphisms, though that might not be immediately obvious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   299
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   300
\begin{axiom}[Product (identity) morphisms, preliminary version]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   301
For each $k$-ball $X$ and $m$-ball $D$, with $k+m \le n$, there is a map $\cC(X)\to \cC(X\times D)$, 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   302
usually denoted $a\mapsto a\times D$ for $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   303
These maps must satisfy the following conditions.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   304
\begin{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   305
\item
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   306
If $f:X\to X'$ and $\tilde{f}:X\times D \to X'\times D'$ are homeomorphisms such that the diagram
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   307
\[ \xymatrix{
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   308
	X\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & X'\times D' \ar[d]^{\pi} \\
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   309
	X \ar[r]^{f} & X'
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   310
} \]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   311
commutes, then we have 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   312
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   313
	\tilde{f}(a\times D) = f(a)\times D' .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   314
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   315
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   316
Product morphisms are compatible with gluing (composition) in both factors:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   317
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   318
	(a'\times D)\bullet(a''\times D) = (a'\bullet a'')\times D
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   319
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   320
and
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   321
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   322
	(a\times D')\bullet(a\times D'') = a\times (D'\bullet D'') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   323
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   324
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   325
Product morphisms are associative:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   326
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   327
	(a\times D)\times D' = a\times (D\times D') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   328
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   329
(Here we are implicitly using functoriality and the obvious homeomorphism
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   330
$(X\times D)\times D' \to X\times(D\times D')$.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   331
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   332
Product morphisms are compatible with restriction:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   333
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   334
	\res_{X\times E}(a\times D) = a\times E
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   335
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   336
for $E\sub \bd D$ and $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   337
\end{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   338
\end{axiom}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   339
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   340
We will need to strengthen the above preliminary version of the axiom to allow
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   341
for products which are ``pinched" in various ways along their boundary.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   342
(See Figure \ref{pinched_prods}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   343
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   344
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   345
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   346
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   347
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   348
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   349
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   350
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   351
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   352
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   353
\draw[blue,line width=1.5pt] (0,-3) -- (5.66,-3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   354
\draw[->,red,line width=2pt] (2.83,-1.5) -- (2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   355
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   356
\qquad \qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   357
\begin{tikzpicture}[baseline=-0.15cm]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   358
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   359
\path[clip] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   360
\draw[blue,line width=2pt] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   361
\foreach \x in {-6, -5.5, ..., 0} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   362
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   363
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   364
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   365
\draw[blue,line width=1.5pt] (-5.66,-3.15) -- (0,-3.15);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   366
\draw[->,red,line width=2pt] (-2.83,-1.5) -- (-2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   367
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   368
$$
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   369
\caption{Examples of pinched products}\label{pinched_prods}
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   370
\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   371
(The need for a strengthened version will become apparent in Appendix \ref{sec:comparing-defs}
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   372
where we construct a traditional category from a topological category.)
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   373
Define a {\it pinched product} to be a map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   374
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   375
	\pi: E\to X
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   376
\]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   377
such that $E$ is a $k{+}m$-ball, $X$ is a $k$-ball ($m\ge 1$), and $\pi$ is locally modeled
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   378
on a standard iterated degeneracy map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   379
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   380
	d: \Delta^{k+m}\to\Delta^k .
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   381
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   382
In other words, \nn{each point has a neighborhood blah blah...}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   383
(We thank Kevin Costello for suggesting this approach.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   384
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   385
Note that for each interior point $x\in X$, $\pi\inv(x)$ is an $m$-ball,
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   386
and for for each boundary point $x\in\bd X$, $\pi\inv(x)$ is a ball of dimension
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   387
$l \le m$, with $l$ depending on $x$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   388
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   389
It is easy to see that a composition of pinched products is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   390
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   391
A {\it sub pinched product} is a sub-$m$-ball $E'\sub E$ such that the restriction
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   392
$\pi:E'\to \pi(E')$ is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   393
A {union} of pinched products is a decomposition $E = \cup_i E_i$
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   394
such that each $E_i\sub E$ is a sub pinched product.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   395
(See Figure \ref{pinched_prod_unions}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   396
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   397
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   398
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   399
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   400
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   401
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   402
\draw[blue] (0,0) -- (5.66,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   403
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   404
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   405
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   406
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   407
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   408
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   409
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   410
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   411
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   412
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   413
\draw[blue] (0,0) -- (5,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   414
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   415
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   416
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   417
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   418
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   419
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   420
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   421
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   422
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   423
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   424
\draw[blue] (2.83,3) circle (3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   425
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   426
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   427
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   428
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   429
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   430
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   431
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   432
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   433
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   434
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   435
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   436
\draw[blue] (0,-1) -- (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   437
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   438
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   439
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   440
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   441
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   442
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   443
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   444
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   445
\path[clip] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   446
\draw[blue,line width=2pt] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   447
\draw[blue] (1,-1) .. controls  (2,-1) and (3,1) .. (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   448
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   449
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   450
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   451
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   452
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   453
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   454
\caption{Five examples of unions of pinched products}\label{pinched_prod_unions}
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   455
\end{figure}
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   456
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   457
The product axiom will give a map $\pi^*:\cC(X)\to \cC(E)$ for each pinched product
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   458
$\pi:E\to X$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   459
Morphisms in the image of $\pi^*$ will be called product morphisms.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   460
Before stating the axiom, we illustrate it in our two motivating examples of $n$-categories.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   461
In the case where $\cC(X) = \{f: X\to T\}$, we define $\pi^*(f) = f\circ\pi$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   462
In the case where $\cC(X)$ is the set of all labeled embedded cell complexes $K$ in $X$, 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   463
define $\pi^*(K) = \pi\inv(K)$, with each codimension $i$ cell $\pi\inv(c)$ labeled by the
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   464
same (traditional) $i$-morphism as the corresponding codimension $i$ cell $c$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   465
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   466
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   467
\addtocounter{axiom}{-1}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   468
\begin{axiom}[Product (identity) morphisms]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   469
For each pinched product $\pi:E\to X$, with $X$ a $k$-ball and $E$ a $k{+}m$-ball ($m\ge 1$),
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   470
there is a map $\pi^*:\cC(X)\to \cC(E)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   471
These maps must satisfy the following conditions.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   472
\begin{enumerate}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   473
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   474
If $\pi:E\to X$ and $\pi':E'\to X'$ are pinched products, and
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   475
if $f:X\to X'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   476
\[ \xymatrix{
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   477
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   478
	X \ar[r]^{f} & X'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   479
} \]
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   480
commutes, then we have 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   481
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   482
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   483
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   484
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   485
Product morphisms are compatible with gluing (composition).
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   486
Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   487
be pinched products with $E = E_1\cup E_2$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   488
Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\sub X$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   489
Then 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   490
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   491
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   492
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   493
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   494
Product morphisms are associative.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   495
If $\pi:E\to X$ and $\rho:D\to E$ and pinched products then
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   496
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   497
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   498
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   499
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   500
Product morphisms are compatible with restriction.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   501
If we have a commutative diagram
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   502
\[ \xymatrix{
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   503
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   504
	Y \ar@{^(->}[r] & X
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   505
} \]
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   506
such that $\rho$ and $\pi$ are pinched products, then
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   507
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   508
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   509
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   510
\end{enumerate}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   511
\end{axiom}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   512
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   513
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   514
\medskip
128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   515
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   516
All of the axioms listed above hold for both ordinary $n$-categories and $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   517
The last axiom (below), concerning actions of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   518
homeomorphisms in the top dimension $n$, distinguishes the two cases.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   519
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   520
We start with the plain $n$-category case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   521
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   522
\begin{axiom}[Isotopy invariance in dimension $n$]{\textup{\textbf{[preliminary]}}}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   523
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   524
to the identity on $\bd X$ and is isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   525
Then $f$ acts trivially on $\cC(X)$; $f(a) = a$ for all $a\in \cC(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   526
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   527
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   528
This axiom needs to be strengthened to force product morphisms to act as the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   529
Let $X$ be an $n$-ball and $Y\sub\bd X$ be an $n{-}1$-ball.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   530
Let $J$ be a 1-ball (interval).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   531
We have a collaring homeomorphism $s_{Y,J}: X\cup_Y (Y\times J) \to X$.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   532
(Here we use the ``pinched" version of $Y\times J$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   533
\nn{do we need notation for this?})
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   534
We define a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   535
\begin{eqnarray*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   536
	\psi_{Y,J}: \cC(X) &\to& \cC(X) \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   537
	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   538
\end{eqnarray*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   539
(See Figure \ref{glue-collar}.)
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   540
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   541
\begin{equation*}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   542
\begin{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   543
\def\rad{1}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   544
\def\srad{0.75}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   545
\def\gap{4.5}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   546
\foreach \i in {0, 1, 2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   547
	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   548
	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   549
	\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   550
		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   551
	}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   552
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   553
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   554
\begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   555
	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   556
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   557
\node[right=1mm] at (0.east) {$a$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   558
\draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   559
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   560
\draw (1-small)  circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   561
\foreach \theta in {90, 72, ..., -90} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   562
	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   563
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   564
\filldraw[fill=white] (1) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   565
\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   566
	\fill (intersection \n of 1-small and 1) circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   567
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   568
\node[below] at (1-small.south) {$a \times J$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   569
\draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   570
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   571
\begin{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   572
\path[clip] (2) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   573
\draw[clip] (2.east) circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   574
\foreach \y in {1, 0.86, ..., -1} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   575
	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   576
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   577
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   578
\end{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   579
\end{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   580
\begin{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   581
\xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   582
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   583
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   584
\caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   585
We call a map of this form a {\it collar map}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   586
It can be thought of as the action of the inverse of
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   587
a map which projects a collar neighborhood of $Y$ onto $Y$,
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   588
or as the limit of homeomorphisms $X\to X$ which expand a very thin collar of $Y$
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   589
to a larger collar.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   590
We call the equivalence relation generated by collar maps and homeomorphisms
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   591
isotopic (rel boundary) to the identity {\it extended isotopy}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   592
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   593
The revised axiom is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   594
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   595
\addtocounter{axiom}{-1}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   596
\begin{axiom}{\textup{\textbf{[topological  version]}} Extended isotopy invariance in dimension $n$.}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   597
\label{axiom:extended-isotopies}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   598
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   599
to the identity on $\bd X$ and isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   600
Then $f$ acts trivially on $\cC(X)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   601
In addition, collar maps act trivially on $\cC(X)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   602
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   603
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   604
\smallskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   605
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   606
For $A_\infty$ $n$-categories, we replace
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   607
isotopy invariance with the requirement that families of homeomorphisms act.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   608
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   609
Let $\Homeo_\bd(X)$ denote homeomorphisms of $X$ which fix $\bd X$ and
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   610
$C_*(\Homeo_\bd(X))$ denote the singular chains on this space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   611
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   612
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   613
\addtocounter{axiom}{-1}
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   614
\begin{axiom}{\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$.}
335
9bf409eb5040 mostly finished inserting \cl
Scott Morrison <scott@tqft.net>
parents: 334
diff changeset
   615
For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   616
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   617
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   618
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   619
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   620
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 225
diff changeset
   621
a diagram like the one in Proposition \ref{CHprop} commutes.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   622
\nn{repeat diagram here?}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   623
\nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   624
\end{axiom}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   625
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   626
We should strengthen the above axiom to apply to families of collar maps.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   627
To do this we need to explain how collar maps form a topological space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   628
Roughly, the set of collared $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   629
and we can replace the class of all intervals $J$ with intervals contained in $\r$.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   630
Having chains on the space of collar maps act gives rise to coherence maps involving
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   631
weak identities.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   632
We will not pursue this in this draft of the paper.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   633
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   634
Note that if we take homology of chain complexes, we turn an $A_\infty$ $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   635
into a plain $n$-category (enriched over graded groups).
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   636
In a different direction, if we enrich over topological spaces instead of chain complexes,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   637
we get a space version of an $A_\infty$ $n$-category, with $\Homeo_\bd(X)$ acting 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   638
instead of  $C_*(\Homeo_\bd(X))$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   639
Taking singular chains converts such a space type $A_\infty$ $n$-category into a chain complex
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   640
type $A_\infty$ $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   641
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   642
\medskip
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   643
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   644
The alert reader will have already noticed that our definition of a (plain) $n$-category
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   645
is extremely similar to our definition of a system of fields.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   646
There are two differences.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   647
First, for the $n$-category definition we restrict our attention to balls
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   648
(and their boundaries), while for fields we consider all manifolds.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   649
Second,  in category definition we directly impose isotopy
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   650
invariance in dimension $n$, while in the fields definition we 
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   651
instead remember a subspace of local relations which contain differences of isotopic fields. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   652
(Recall that the compensation for this complication is that we can demand that the gluing map for fields is injective.)
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   653
Thus a system of fields and local relations $(\cF,\cU)$ determines an $n$-category $\cC_ {\cF,\cU}$ simply by restricting our attention to
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   654
balls and, at level $n$, quotienting out by the local relations:
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   655
\begin{align*}
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   656
\cC_{\cF,\cU}(B^k) & = \begin{cases}\cF(B) & \text{when $k<n$,} \\ \cF(B) / \cU(B) & \text{when $k=n$.}\end{cases}
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   657
\end{align*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   658
This $n$-category can be thought of as the local part of the fields.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   659
Conversely, given a topological $n$-category we can construct a system of fields via 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   660
a colimit construction; see \S \ref{ss:ncat_fields} below.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   661
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   662
\subsection{Examples of $n$-categories}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   663
\label{ss:ncat-examples}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   664
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   665
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   666
We now describe several classes of examples of $n$-categories satisfying our axioms.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   667
We typically specify only the morphisms; the rest of the data for the category
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   668
(restriction maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   669
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   670
\begin{example}[Maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   671
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   672
\label{ex:maps-to-a-space}%
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   673
Let $T$be a topological space.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   674
We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   675
For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   676
all continuous maps from $X$ to $T$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   677
For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   678
homotopies fixed on $\bd X$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   679
(Note that homotopy invariance implies isotopy invariance.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   680
For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   681
be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   682
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   683
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   684
\noop{
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   685
Recall we described a system of fields and local relations based on maps to $T$ in Example \ref{ex:maps-to-a-space(fields)} above.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   686
Constructing a system of fields from $\pi_{\leq n}(T)$ recovers that example.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   687
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   688
an n-cat}
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   689
}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   690
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   691
\begin{example}[Maps to a space, with a fiber]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   692
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   693
\label{ex:maps-to-a-space-with-a-fiber}%
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   694
We can modify the example above, by fixing a
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   695
closed $m$-manifold $F$, and defining $\pi^{\times F}_{\leq n}(T)(X) = \Maps(X \times F \to T)$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   696
otherwise leaving the definition in Example \ref{ex:maps-to-a-space} unchanged.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   697
Taking $F$ to be a point recovers the previous case.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   698
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   699
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   700
\begin{example}[Linearized, twisted, maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   701
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   702
\label{ex:linearized-maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   703
We can linearize Examples \ref{ex:maps-to-a-space} and \ref{ex:maps-to-a-space-with-a-fiber} as follows.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   704
Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   705
(have in mind the trivial cocycle).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   706
For $X$ of dimension less than $n$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X)$ as before, ignoring $\alpha$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   707
For $X$ an $n$-ball and $c\in \Maps(\bdy X \times F \to T)$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X; c)$ to be
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   708
the $R$-module of finite linear combinations of continuous maps from $X\times F$ to $T$,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   709
modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   710
$h: X\times F\times I \to T$, then $a = \alpha(h)b$.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   711
(In order for this to be well-defined we must choose $\alpha$ to be zero on degenerate simplices.
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   712
Alternatively, we could equip the balls with fundamental classes.)
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   713
\end{example}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   714
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   715
The next example is only intended to be illustrative, as we don't specify which definition of a ``traditional $n$-category" we intend.
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   716
Further, most of these definitions don't even have an agreed-upon notion of ``strong duality", which we assume here.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   717
\begin{example}[Traditional $n$-categories]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   718
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   719
\label{ex:traditional-n-categories}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   720
Given a ``traditional $n$-category with strong duality" $C$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   721
define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   722
to be the set of all $C$-labeled embedded cell complexes of $X$ (c.f. \S \ref{sec:fields}).
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
   723
For $X$ an $n$-ball and $c\in \cl{\cC}(\bd X)$, define $\cC(X; c)$ to be finite linear
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   724
combinations of $C$-labeled embedded cell complexes of $X$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   725
modulo the kernel of the evaluation map.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   726
Define a product morphism $a\times D$, for $D$ an $m$-ball, to be the product of the cell complex of $a$ with $D$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   727
with each cell labelled according to the corresponding cell for $a$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   728
(These two cells have the same codimension.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   729
More generally, start with an $n{+}m$-category $C$ and a closed $m$-manifold $F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   730
Define $\cC(X)$, for $\dim(X) < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   731
to be the set of all $C$-labeled embedded cell complexes of $X\times F$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   732
Define $\cC(X; c)$, for $X$ an $n$-ball,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   733
to be the dual Hilbert space $A(X\times F; c)$.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   734
(See Subsection \ref{sec:constructing-a-tqft}.)
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   735
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   736
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   737
\noop{
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   738
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   739
an n-cat}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   740
Recall we described a system of fields and local relations based on a ``traditional $n$-category" 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   741
$C$ in Example \ref{ex:traditional-n-categories(fields)} above.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   742
\nn{KW: We already refer to \S \ref{sec:fields} above}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   743
Constructing a system of fields from $\cC$ recovers that example. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   744
\todo{Except that it doesn't: pasting diagrams v.s. string diagrams.}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   745
\nn{KW: but the above example is all about string diagrams.  the only difference is at the top level,
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   746
where the quotient is built in.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   747
but (string diagrams)/(relations) is isomorphic to 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   748
(pasting diagrams composed of smaller string diagrams)/(relations)}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   749
}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   750
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   751
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   752
\newcommand{\Bord}{\operatorname{Bord}}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   753
\begin{example}[The bordism $n$-category, plain version]
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   754
\label{ex:bord-cat}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   755
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   756
\label{ex:bordism-category}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   757
For a $k$-ball $X$, $k<n$, define $\Bord^n(X)$ to be the set of all $k$-dimensional
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   758
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   759
to $\bd X$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   760
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes (rel boundary) of such $n$-dimensional submanifolds;
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   761
we identify $W$ and $W'$ if $\bd W = \bd W'$ and there is a homeomorphism
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   762
$W \to W'$ which restricts to the identity on the boundary.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   763
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   764
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   765
%\nn{the next example might be an unnecessary distraction.  consider deleting it.}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   766
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   767
%\begin{example}[Variation on the above examples]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   768
%We could allow $F$ to have boundary and specify boundary conditions on $X\times \bd F$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   769
%for example product boundary conditions or take the union over all boundary conditions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   770
%%\nn{maybe should not emphasize this case, since it's ``better" in some sense
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   771
%%to think of these guys as affording a representation
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   772
%%of the $n{+}1$-category associated to $\bd F$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   773
%\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   774
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   775
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   776
%We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   777
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   778
\begin{example}[Chains (or space) of maps to a space]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   779
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   780
\label{ex:chains-of-maps-to-a-space}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   781
We can modify Example \ref{ex:maps-to-a-space} above to define the fundamental $A_\infty$ $n$-category $\pi^\infty_{\le n}(T)$ of a topological space $T$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   782
For a $k$-ball $X$, with $k < n$, the set $\pi^\infty_{\leq n}(T)(X)$ is just $\Maps(X \to T)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   783
Define $\pi^\infty_{\leq n}(T)(X; c)$ for an $n$-ball $X$ and $c \in \pi^\infty_{\leq n}(T)(\bdy X)$ to be the chain complex
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   784
\[
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   785
	C_*(\Maps_c(X\times F \to T)),
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   786
\]
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   787
where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   788
and $C_*$ denotes singular chains.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   789
Alternatively, if we take the $n$-morphisms to be simply $\Maps_c(X\times F \to T)$, 
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   790
we get an $A_\infty$ $n$-category enriched over spaces.
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   791
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   792
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   793
See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   794
homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   795
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   796
\begin{example}[Blob complexes of balls (with a fiber)]
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   797
\rm
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   798
\label{ex:blob-complexes-of-balls}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   799
Fix an $n{-}k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   800
We will define an $A_\infty$ $k$-category $\cC$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   801
When $X$ is a $m$-ball, with $m<k$, define $\cC(X) = \cE(X\times F)$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   802
When $X$ is an $k$-ball,
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   803
define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   804
where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   805
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   806
400
a02a6158f3bd Breaking up 'properties' in the intro into smaller subsections, converting many properties back to theorems, and numbering according to where they occur in the text. Not completely done, e.g. the action map which needs statements made consistent.
Scott Morrison <scott@tqft.net>
parents: 399
diff changeset
   807
This example will be essential for Theorem \ref{thm:product} below, which allows us to compute the blob complex of a product.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   808
Notice that with $F$ a point, the above example is a construction turning a topological 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   809
$n$-category $\cC$ into an $A_\infty$ $n$-category which we'll denote by $\bc_*(\cC)$.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   810
We think of this as providing a ``free resolution" 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   811
of the topological $n$-category. 
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   812
\nn{say something about cofibrant replacements?}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   813
In fact, there is also a trivial, but mostly uninteresting, way to do this: 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   814
we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   815
and take $\CD{B}$ to act trivially. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   816
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   817
Be careful that the ``free resolution" of the topological $n$-category $\pi_{\leq n}(T)$ is not the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   818
It's easy to see that with $n=0$, the corresponding system of fields is just 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   819
linear combinations of connected components of $T$, and the local relations are trivial.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   820
There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   821
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   822
\begin{example}[The bordism $n$-category, $A_\infty$ version]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   823
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   824
\label{ex:bordism-category-ainf}
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   825
As in Example \ref{ex:bord-cat}, for $X$ a $k$-ball, $k<n$, we define $\Bord^{n,\infty}(X)$
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   826
to be the set of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   827
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   828
to $\bd X$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   829
For an $n$-ball $X$ with boundary condition $c$ 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   830
define $\Bord^{n,\infty}(X; c)$ to be the space of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   831
submanifolds $W$ of $X\times \Real^\infty$ such that 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   832
$W$ coincides with $c$ at $\bd X \times \Real^\infty$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   833
(The topology on this space is induced by ambient isotopy rel boundary.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   834
This is homotopy equivalent to a disjoint union of copies $\mathrm{B}\!\Homeo(W')$, where
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   835
$W'$ runs though representatives of homeomorphism types of such manifolds.)
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   836
\nn{check this}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   837
\end{example}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   838
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   839
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   840
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   841
Let $\cE\cB_n$ be the operad of smooth embeddings of $k$ (little)
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   842
copies of the standard $n$-ball $B^n$ into another (big) copy of $B^n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   843
(We require that the interiors of the little balls be disjoint, but their 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   844
boundaries are allowed to meet.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   845
Note in particular that the space for $k=1$ contains a copy of $\Diff(B^n)$, namely
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   846
the embeddings of a ``little" ball with image all of the big ball $B^n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   847
\nn{should we warn that the inclusion of this copy of $\Diff(B^n)$ is not a homotopy equivalence?})
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   848
The operad $\cE\cB_n$ is homotopy equivalent to the standard framed little $n$-ball operad:
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   849
by shrinking the little balls (precomposing them with dilations), 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   850
we see that both operads are homotopic to the space of $k$ framed points
401
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   851
in $B^n$.
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   852
It is easy to see that $n$-fold loop spaces $\Omega^n(T)$  have
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   853
an action of $\cE\cB_n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   854
\nn{add citation for this operad if we can find one}
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   855
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   856
\begin{example}[$E_n$ algebras]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   857
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   858
\label{ex:e-n-alg}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   859
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   860
Let $A$ be an $\cE\cB_n$-algebra.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   861
Note that this implies a $\Diff(B^n)$ action on $A$, 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   862
since $\cE\cB_n$ contains a copy of $\Diff(B^n)$.
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   863
We will define an $A_\infty$ $n$-category $\cC^A$.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   864
If $X$ is a ball of dimension $k<n$, define $\cC^A(X)$ to be a point.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   865
In other words, the $k$-morphisms are trivial for $k<n$.
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   866
If $X$ is an $n$-ball, we define $\cC^A(X)$ via a colimit construction.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   867
(Plain colimit, not homotopy colimit.)
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   868
Let $J$ be the category whose objects are embeddings of a disjoint union of copies of 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   869
the standard ball $B^n$ into $X$, and who morphisms are given by engulfing some of the 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   870
embedded balls into a single larger embedded ball.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   871
To each object of $J$ we associate $A^{\times m}$ (where $m$ is the number of balls), and
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   872
to each morphism of $J$ we associate a morphism coming from the $\cE\cB_n$ action on $A$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   873
Alternatively and more simply, we could define $\cC^A(X)$ to be 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   874
$\Diff(B^n\to X)\times A$ modulo the diagonal action of $\Diff(B^n)$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   875
The remaining data for the $A_\infty$ $n$-category 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   876
--- composition and $\Diff(X\to X')$ action ---
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   877
also comes from the $\cE\cB_n$ action on $A$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   878
\nn{should we spell this out?}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   879
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   880
\nn{Should remark that this is just Lurie's topological chiral homology construction
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   881
applied to $n$-balls (check this).
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   882
Hmmm... Does Lurie do both framed and unframed cases?}
356
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   883
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   884
Conversely, one can show that a topological $A_\infty$ $n$-category $\cC$, where the $k$-morphisms
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   885
$\cC(X)$ are trivial (single point) for $k<n$, gives rise to 
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   886
an $\cE\cB_n$-algebra.
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   887
\nn{The paper is already long; is it worth giving details here?}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   888
\end{example}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   889
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   890
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   891
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   892
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   893
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   894
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   895
%\subsection{From $n$-categories to systems of fields}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   896
\subsection{From balls to manifolds}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   897
\label{ss:ncat_fields} \label{ss:ncat-coend}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   898
In this section we describe how to extend an $n$-category $\cC$ as described above 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   899
(of either the plain or $A_\infty$ variety) to an invariant of manifolds, which we denote by $\cl{\cC}$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   900
This extension is a certain colimit, and we've chosen the notation to remind you of this.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   901
Thus we show that functors $\cC_k$ satisfying the axioms above have a canonical extension 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   902
from $k$-balls to arbitrary $k$-manifolds.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   903
Recall that we've already anticipated this construction in the previous section, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   904
inductively defining $\cl{\cC}$ on $k$-spheres in terms of $\cC$ on $k$-balls, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   905
so that we can state the boundary axiom for $\cC$ on $k+1$-balls.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   906
In the case of plain $n$-categories, this construction factors into a construction of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   907
system of fields and local relations, followed by the usual TQFT definition of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   908
vector space invariant of manifolds given as Definition \ref{defn:TQFT-invariant}.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   909
For an $A_\infty$ $n$-category, $\cl{\cC}$ is defined using a homotopy colimit instead.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   910
Recall that we can take a plain $n$-category $\cC$ and pass to the ``free resolution", 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   911
an $A_\infty$ $n$-category $\bc_*(\cC)$, by computing the blob complex of balls (recall Example \ref{ex:blob-complexes-of-balls} above).
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   912
We will show in Corollary \ref{cor:new-old} below that the homotopy colimit invariant 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   913
for a manifold $M$ associated to this $A_\infty$ $n$-category is actually the same as the original blob complex  for $M$ with coefficients in $\cC$.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   914
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   915
We will first define the ``cell-decomposition" poset $\cell(W)$ for any $k$-manifold $W$, for $1 \leq k \leq n$. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   916
An $n$-category $\cC$ provides a functor from this poset to the category of sets, 
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   917
and we  will define $\cl{\cC}(W)$ as a suitable colimit 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   918
(or homotopy colimit in the $A_\infty$ case) of this functor. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   919
We'll later give a more explicit description of this colimit.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   920
In the case that the $n$-category $\cC$ is enriched (e.g. associates vector spaces or chain complexes to $n$-manifolds with boundary data), 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   921
then the resulting colimit is also enriched, that is, the set associated to $W$ splits into subsets according to boundary data, and each of these subsets has the appropriate structure (e.g. a vector space or chain complex).
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   922
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   923
Define a {\it permissible decomposition} of $W$ to be a cell decomposition
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   924
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   925
	W = \bigcup_a X_a ,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   926
\]
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   927
where each closed top-dimensional cell $X_a$ is an embedded $k$-ball.
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   928
\nn{need to define this more carefully}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   929
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   930
of $y$, or write $x \le y$, if each $k$-ball of $y$ is a union of $k$-balls of $x$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   931
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   932
\begin{defn}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   933
The category (poset) $\cell(W)$ has objects the permissible decompositions of $W$, 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   934
and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   935
See Figure \ref{partofJfig} for an example.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   936
\end{defn}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   937
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   938
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   939
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   940
\mathfig{.63}{ncat/zz2}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   941
\end{equation*}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   942
\caption{A small part of $\cell(W)$}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   943
\label{partofJfig}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   944
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   945
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   946
An $n$-category $\cC$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   947
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   948
(possibly with additional structure if $k=n$).
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   949
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   950
and, as described above, we have a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   951
are splittable along this decomposition.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   952
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   953
\begin{defn}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   954
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   955
For a decomposition $x = \bigcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   956
\begin{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   957
\label{eq:psi-C}
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   958
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   959
\end{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   960
where the restrictions to the various pieces of shared boundaries amongst the cells
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   961
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   962
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   963
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   964
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   965
If $k=n$ in the above definition and we are enriching in some auxiliary category, 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   966
we need to say a bit more.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   967
We can rewrite Equation \ref{eq:psi-C} as
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   968
\begin{equation} \label{eq:psi-CC}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   969
	\psi_{\cC;W}(x) \deq \coprod_\beta \prod_a \cC(X_a; \beta) ,
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   970
\end{equation}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   971
where $\beta$ runs through labelings of the $k{-}1$-skeleton of the decomposition
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   972
(which are compatible when restricted to the $k{-}2$-skeleton), and $\cC(X_a; \beta)$
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   973
means the subset of $\cC(X_a)$ whose restriction to $\bd X_a$ agress with $\beta$.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   974
If we are enriching over $\cS$ and $k=n$, then $\cC(X_a; \beta)$ is an object in 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   975
$\cS$ and the coproduct and product in Equation \ref{eq:psi-CC} should be replaced by the approriate
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   976
operations in $\cS$ (e.g. direct sum and tensor product if $\cS$ is Vect).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   977
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   978
Finally, we construct $\cC(W)$ as the appropriate colimit of $\psi_{\cC;W}$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   979
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   980
\begin{defn}[System of fields functor]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   981
\label{def:colim-fields}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   982
If $\cC$ is an $n$-category enriched in sets or vector spaces, $\cl{\cC}(W)$ is the usual colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   983
That is, for each decomposition $x$ there is a map
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   984
$\psi_{\cC;W}(x)\to \cl{\cC}(W)$, these maps are compatible with the refinement maps
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   985
above, and $\cl{\cC}(W)$ is universal with respect to these properties.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   986
\end{defn}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   987
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   988
\begin{defn}[System of fields functor, $A_\infty$ case]
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   989
When $\cC$ is an $A_\infty$ $n$-category, $\cl{\cC}(W)$ for $W$ a $k$-manifold with $k < n$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   990
is defined as above, as the colimit of $\psi_{\cC;W}$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   991
When $W$ is an $n$-manifold, the chain complex $\cl{\cC}(W)$ is the homotopy colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   992
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   993
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   994
We can specify boundary data $c \in \cl{\cC}(\bdy W)$, and define functors $\psi_{\cC;W,c}$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   995
with values the subsets of those of $\psi_{\cC;W}$ which agree with $c$ on the boundary of $W$.
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
   996
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   997
We now give a more concrete description of the colimit in each case.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   998
If $\cC$ is enriched over vector spaces, and $W$ is an $n$-manifold, 
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   999
we can take the vector space $\cl{\cC}(W,c)$ to be the direct sum over all permissible decompositions of $W$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1000
\begin{equation*}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1001
	\cl{\cC}(W,c) = \left( \bigoplus_x \psi_{\cC;W,c}(x)\right) \big/ K
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1002
\end{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1003
where $K$ is the vector space spanned by elements $a - g(a)$, with
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1004
$a\in \psi_{\cC;W,c}(x)$ for some decomposition $x$, and $g: \psi_{\cC;W,c}(x)
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1005
\to \psi_{\cC;W,c}(y)$ is value of $\psi_{\cC;W,c}$ on some antirefinement $x \leq y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1006
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1007
In the $A_\infty$ case, enriched over chain complexes, the concrete description of the homotopy colimit
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
  1008
is more involved.
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
  1009
%\nn{should probably rewrite this to be compatible with some standard reference}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1010
Define an $m$-sequence in $W$ to be a sequence $x_0 \le x_1 \le \dots \le x_m$ of permissible decompositions of $W$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1011
Such sequences (for all $m$) form a simplicial set in $\cell(W)$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1012
Define $\cl{\cC}(W)$ as a vector space via
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1013
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1014
	\cl{\cC}(W) = \bigoplus_{(x_i)} \psi_{\cC;W}(x_0)[m] ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1015
\]
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1016
where the sum is over all $m$-sequences $(x_i)$ and all $m$, and each summand is degree shifted by $m$. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1017
(Our homological conventions are non-standard: if a complex $U$ is concentrated in degree $0$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1018
the complex $U[m]$ is concentrated in degree $m$.)
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1019
We endow $\cl{\cC}(W)$ with a differential which is the sum of the differential of the $\psi_{\cC;W}(x_0)$
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1020
summands plus another term using the differential of the simplicial set of $m$-sequences.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1021
More specifically, if $(a, \bar{x})$ denotes an element in the $\bar{x}$
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1022
summand of $\cl{\cC}(W)$ (with $\bar{x} = (x_0,\dots,x_k)$), define
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1023
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1024
	\bd (a, \bar{x}) = (\bd a, \bar{x}) + (-1)^{\deg{a}} (g(a), d_0(\bar{x})) + (-1)^{\deg{a}} \sum_{j=1}^k (-1)^{j} (a, d_j(\bar{x})) ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1025
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1026
where $d_j(\bar{x}) = (x_0,\dots,x_{j-1},x_{j+1},\dots,x_k)$ and $g: \psi_\cC(x_0)\to \psi_\cC(x_1)$
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1027
is the usual gluing map coming from the antirefinement $x_0 \le x_1$.
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1028
\nn{need to say this better}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1029
\nn{maybe mention that there is a version that emphasizes minimal gluings (antirefinements) which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1030
combine only two balls at a time; for $n=1$ this version will lead to usual definition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1031
of $A_\infty$ category}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1032
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1033
We will call $m$ the filtration degree of the complex.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1034
We can think of this construction as starting with a disjoint copy of a complex for each
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1035
permissible decomposition (filtration degree 0).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1036
Then we glue these together with mapping cylinders coming from gluing maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1037
(filtration degree 1).
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1038
Then we kill the extra homology we just introduced with mapping 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1039
cylinders between the mapping cylinders (filtration degree 2), and so on.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1040
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1041
$\cC(W)$ is functorial with respect to homeomorphisms of $k$-manifolds. Restricting the $k$-spheres, we have now proved Lemma \ref{lem:spheres}.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1042
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1043
\todo{This next sentence is circular: these maps are an axiom, not a consequence of anything. -S} It is easy to see that
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1044
there are well-defined maps $\cC(W)\to\cC(\bd W)$, and that these maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1045
comprise a natural transformation of functors.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1046
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1047
\begin{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1048
\label{lem:colim-injective}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1049
Let $W$ be a manifold of dimension less than $n$.  Then for each
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1050
decomposition $x$ of $W$ the natural map $\psi_{\cC;W}(x)\to \cl{\cC}(W)$ is injective.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1051
\end{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1052
\begin{proof}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1053
\nn{...}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1054
\end{proof}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1055
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1056
\nn{need to finish explaining why we have a system of fields;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1057
need to say more about ``homological" fields? 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1058
(actions of homeomorphisms);
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1059
define $k$-cat $\cC(\cdot\times W)$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1060
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1061
\subsection{Modules}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  1062
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1063
Next we define plain and $A_\infty$ $n$-category modules.
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1064
The definition will be very similar to that of $n$-categories,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1065
but with $k$-balls replaced by {\it marked $k$-balls,} defined below.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
  1066
\nn{** need to make sure all revisions of $n$-cat def are also made to module def.}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
  1067
\nn{in particular, need to to get rid of the ``hemisphere axiom"}
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1068
%\nn{should they be called $n$-modules instead of just modules?  probably not, but worth considering.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1069
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1070
Our motivating example comes from an $(m{-}n{+}1)$-dimensional manifold $W$ with boundary
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1071
in the context of an $m{+}1$-dimensional TQFT.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1072
Such a $W$ gives rise to a module for the $n$-category associated to $\bd W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1073
This will be explained in more detail as we present the axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1074
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1075
\nn{should also develop $\pi_{\le n}(T, S)$ as a module for $\pi_{\le n}(T)$, where $S\sub T$.}
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1076
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1077
Throughout, we fix an $n$-category $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1078
For all but one axiom, it doesn't matter whether $\cC$ is a topological $n$-category or an $A_\infty$ $n$-category.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1079
We state the final axiom, on actions of homeomorphisms, differently in the two cases.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1080
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1081
Define a {\it marked $k$-ball} to be a pair $(B, N)$ homeomorphic to the pair
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1082
$$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1083
We call $B$ the ball and $N$ the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1084
A homeomorphism between marked $k$-balls is a homeomorphism of balls which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1085
restricts to a homeomorphism of markings.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1086
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1087
\begin{module-axiom}[Module morphisms]
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1088
{For each $0 \le k \le n$, we have a functor $\cM_k$ from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1089
the category of marked $k$-balls and 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1090
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1091
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1092
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1093
(As with $n$-categories, we will usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1094
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1095
For example, let $\cD$ be the $m{+}1$-dimensional TQFT which assigns to a $k$-manifold $N$ the set 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1096
of maps from $N$ to $T$, modulo homotopy (and possibly linearized) if $k=m$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1097
Let $W$ be an $(m{-}n{+}1)$-dimensional manifold with boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1098
Let $\cC$ be the $n$-category with $\cC(X) \deq \cD(X\times \bd W)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1099
Let $\cM(B, N) \deq \cD((B\times \bd W)\cup (N\times W))$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1100
(The union is along $N\times \bd W$.)
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1101
(If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1102
the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1103
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1104
\begin{figure}[!ht]
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1105
$$\mathfig{.8}{ncat/boundary-collar}$$
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1106
\caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1107
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1108
Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1109
Call such a thing a {marked $k{-}1$-hemisphere}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1110
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1111
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1112
\label{lem:hemispheres}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1113
{For each $0 \le k \le n-1$, we have a functor $\cM_k$ from 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1114
the category of marked $k$-hemispheres and 
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1115
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1116
\end{lem}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1117
The proof is exactly analogous to that of Lemma \ref{lem:spheres}, and we omit the details.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1118
We use the same type of colimit construction.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1119
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1120
In our example, let $\cM(H) \deq \cD(H\times\bd W \cup \bd H\times W)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1121
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1122
\begin{module-axiom}[Module boundaries (maps)]
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1123
{For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cM(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1124
These maps, for various $M$, comprise a natural transformation of functors.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1125
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1126
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1127
Given $c\in\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1129
If the $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1130
then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1131
and $c\in \cC(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1132
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1133
\begin{lem}[Boundary from domain and range]
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1134
{Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k$-hemisphere ($0\le k\le n-1$),
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1135
$M_i$ is a marked $k$-ball, and $E = M_1\cap M_2$ is a marked $k{-}1$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1136
Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1137
two maps $\bd: \cM(M_i)\to \cM(E)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1138
Then (axiom) we have an injective map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1139
\[
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1140
	\gl_E : \cM(M_1) \times_{\cM(E)} \cM(M_2) \hookrightarrow \cM(H)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1141
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1142
which is natural with respect to the actions of homeomorphisms.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1143
\end{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1144
Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1145
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1146
Let $\cM(H)_E$ denote the image of $\gl_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1147
We will refer to elements of $\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1148
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1149
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1150
\begin{module-axiom}[Module to category restrictions]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1151
{For each marked $k$-hemisphere $H$ there is a restriction map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1152
$\cM(H)\to \cC(H)$.  
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1153
($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1154
These maps comprise a natural transformation of functors.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1155
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1156
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1157
Note that combining the various boundary and restriction maps above
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1158
(for both modules and $n$-categories)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1159
we have for each marked $k$-ball $(B, N)$ and each $k{-}1$-ball $Y\sub \bd B \setmin N$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1160
a natural map from a subset of $\cM(B, N)$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1161
The subset is the subset of morphisms which are appropriately splittable (transverse to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1162
cutting submanifolds).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1163
This fact will be used below.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1164
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1165
In our example, the various restriction and gluing maps above come from
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1166
restricting and gluing maps into $T$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1167
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1168
We require two sorts of composition (gluing) for modules, corresponding to two ways
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1169
of splitting a marked $k$-ball into two (marked or plain) $k$-balls.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1170
(See Figure \ref{zzz3}.)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1171
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1172
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1173
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1174
\mathfig{.4}{ncat/zz3}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1175
\end{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1176
\caption{Module composition (top); $n$-category action (bottom).}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1177
\label{zzz3}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1178
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1180
First, we can compose two module morphisms to get another module morphism.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1181
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1182
\begin{module-axiom}[Module composition]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1183
{Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1184
and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1185
Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1186
Note that each of $M$, $M_1$ and $M_2$ has its boundary split into two marked $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1187
We have restriction (domain or range) maps $\cM(M_i)_E \to \cM(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1188
Let $\cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1189
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1190
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1191
	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1192
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1193
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1194
to the intersection of the boundaries of $M$ and $M_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1195
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1196
(For $k=n$, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1197
\end{module-axiom}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1199
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1200
Second, we can compose an $n$-category morphism with a module morphism to get another
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1201
module morphism.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1202
We'll call this the action map to distinguish it from the other kind of composition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1203
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1204
\begin{module-axiom}[$n$-category action]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1205
{Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1206
$X$ is a plain $k$-ball,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1207
and $Y = X\cap M'$ is a $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1208
Let $E = \bd Y$, which is a $k{-}2$-sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1209
We have restriction maps $\cM(M')_E \to \cC(Y)$ and $\cC(X)_E\to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1210
Let $\cC(X)_E \times_{\cC(Y)} \cM(M')_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1211
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1212
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1213
	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1214
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1215
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1216
to the intersection of the boundaries of $X$ and $M'$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1217
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1218
(For $k=n$, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1219
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1220
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1221
\begin{module-axiom}[Strict associativity]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1222
{The composition and action maps above are strictly associative.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1223
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1224
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1225
Note that the above associativity axiom applies to mixtures of module composition,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1226
action maps and $n$-category composition.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1227
See Figure \ref{zzz1b}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1228
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1229
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1230
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1231
\mathfig{0.49}{ncat/zz0} \mathfig{0.49}{ncat/zz1}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1232
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1233
\caption{Two examples of mixed associativity}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1234
\label{zzz1b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1235
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1236
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1237
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1238
The above three axioms are equivalent to the following axiom,
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1239
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1240
\nn{need figure for this}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1241
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1242
\xxpar{Module multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1243
{Given any decomposition 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1244
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1245
	M =  X_1 \cup\cdots\cup X_p \cup M_1\cup\cdots\cup M_q
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1246
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1247
of a marked $k$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1248
into small (marked and plain) $k$-balls $M_i$ and $X_j$, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1249
map from an appropriate subset (like a fibered product) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1250
of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1251
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1252
	\cC(X_1)\times\cdots\times\cC(X_p) \times \cM(M_1)\times\cdots\times\cM(M_q) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1253
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1254
to $\cM(M)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1255
and these various multifold composition maps satisfy an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1256
operad-type strict associativity condition.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1257
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1258
(The above operad-like structure is analogous to the swiss cheese operad
146
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 145
diff changeset
  1259
\cite{MR1718089}.)
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1260
%\nn{need to double-check that this is true.}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1261
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1262
\begin{module-axiom}[Product/identity morphisms]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1263
{Let $M$ be a marked $k$-ball and $D$ be a plain $m$-ball, with $k+m \le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1264
Then we have a map $\cM(M)\to \cM(M\times D)$, usually denoted $a\mapsto a\times D$ for $a\in \cM(M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1265
If $f:M\to M'$ and $\tilde{f}:M\times D \to M'\times D'$ are maps such that the diagram
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1266
\[ \xymatrix{
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1267
	M\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & M'\times D' \ar[d]^{\pi} \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1268
	M \ar[r]^{f} & M'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1269
} \]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1270
commutes, then we have $\tilde{f}(a\times D) = f(a)\times D'$.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1271
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1272
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
  1273
\nn{Need to add compatibility with various things, as in the n-cat version of this axiom above.}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1274
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1275
\nn{postpone finalizing the above axiom until the n-cat version is finalized}
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1276
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1277
There are two alternatives for the next axiom, according whether we are defining
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1278
modules for plain $n$-categories or $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1279
In the plain case we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1280
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1281
\begin{module-axiom}[\textup{\textbf{[topological version]}} Extended isotopy invariance in dimension $n$]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1282
{Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts
175
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 174
diff changeset
  1283
to the identity on $\bd M$ and is extended isotopic (rel boundary) to the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1284
Then $f$ acts trivially on $\cM(M)$.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1285
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1286
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1287
\nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1288
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1289
We emphasize that the $\bd M$ above means boundary in the marked $k$-ball sense.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1290
In other words, if $M = (B, N)$ then we require only that isotopies are fixed 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1291
on $\bd B \setmin N$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1292
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1293
For $A_\infty$ modules we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1294
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1295
\addtocounter{module-axiom}{-1}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1296
\begin{module-axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1297
{For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1298
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1299
	C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1300
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1301
Here $C_*$ means singular chains and $\Homeo_\bd(M)$ is the space of homeomorphisms of $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1302
which fix $\bd M$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1303
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1304
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
236
3feb6e24a518 changing diff to homeo
Scott Morrison <scott@tqft.net>
parents: 225
diff changeset
  1305
a diagram like the one in Proposition \ref{CHprop} commutes.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1306
\nn{repeat diagram here?}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1307
\nn{restate this with $\Homeo(M\to M')$?  what about boundary fixing property?}}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1308
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1309
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1310
\medskip
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1311
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1312
Note that the above axioms imply that an $n$-category module has the structure
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1313
of an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1314
More specifically, let $J$ be a marked 1-ball, and define $\cE(X)\deq \cM(X\times J)$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
  1315
where $X$ is a $k$-ball and in the product $X\times J$ we pinch 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1316
above the non-marked boundary component of $J$.
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1317
(More specifically, we collapse $X\times P$ to a single point, where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1318
$P$ is the non-marked boundary component of $J$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1319
\nn{give figure for this?}
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1320
Then $\cE$ has the structure of an $n{-}1$-category.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1321
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1322
All marked $k$-balls are homeomorphic, unless $k = 1$ and our manifolds
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1323
are oriented or Spin (but not unoriented or $\text{Pin}_\pm$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1324
In this case ($k=1$ and oriented or Spin), there are two types
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1325
of marked 1-balls, call them left-marked and right-marked,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1326
and hence there are two types of modules, call them right modules and left modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1327
In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1328
there is no left/right module distinction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1329
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1330
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1331
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1332
We now give some examples of modules over topological and $A_\infty$ $n$-categories.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1333
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1334
\begin{example}[Examples from TQFTs]
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1335
\todo{}
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1336
\end{example}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1337
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1338
\begin{example}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1339
Suppose $S$ is a topological space, with a subspace $T$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1340
We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1341
for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1342
$(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1343
such maps modulo homotopies fixed on $\bdy B \setminus N$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1344
This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1345
Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1346
\ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1347
Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1348
\end{example}
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1349
324
a20e2318cbb0 rewrite proof from gluing thm
Kevin Walker <kevin@canyon23.net>
parents: 319
diff changeset
  1350
\subsection{Modules as boundary labels (colimits for decorated manifolds)}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1351
\label{moddecss}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1352
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1353
Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1354
Let $W$ be a $k$-manifold ($k\le n$),
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1355
let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1356
and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1357
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1358
%Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1359
%and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1360
%component $\bd_i W$ of $W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1361
%(More generally, each $\cN_i$ could label some codimension zero submanifold of $\bd W$.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1362
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1363
We will define a set $\cC(W, \cN)$ using a colimit construction similar to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1364
the one appearing in \S \ref{ss:ncat_fields} above.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1365
(If $k = n$ and our $n$-categories are enriched, then
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1366
$\cC(W, \cN)$ will have additional structure; see below.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1367
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1368
Define a permissible decomposition of $W$ to be a decomposition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1369
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1370
	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1371
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1372
where each $X_a$ is a plain $k$-ball (disjoint from $\bd W$) and
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1373
each $M_{ib}$ is a marked $k$-ball intersecting $\bd_i W$,
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1374
with $M_{ib}\cap Y_i$ being the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1375
(See Figure \ref{mblabel}.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1376
\begin{figure}[!ht]\begin{equation*}
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1377
\mathfig{.4}{ncat/mblabel}
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1378
\end{equation*}\caption{A permissible decomposition of a manifold
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1379
whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1380
Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}\end{figure}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1381
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1382
of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1383
This defines a partial ordering $\cell(W)$, which we will think of as a category.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1384
(The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1385
morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1386
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1387
The collection of modules $\cN$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1388
a functor $\psi_\cN$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1389
(possibly with additional structure if $k=n$).
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1390
For a decomposition $x = (X_a, M_{ib})$ in $\cell(W)$, define $\psi_\cN(x)$ to be the subset
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1391
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1392
	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1393
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1394
such that the restrictions to the various pieces of shared boundaries amongst the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1395
$X_a$ and $M_{ib}$ all agree.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1396
(That is, the fibered product over the boundary maps.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1397
If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1398
via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1399
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1400
We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1401
(As usual, if $k=n$ and we are in the $A_\infty$ case, then ``colimit" means
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1402
homotopy colimit.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1403
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1404
If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1405
$\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1406
$D\times Y_i \sub \bd(D\times W)$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1407
It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1408
has the structure of an $n{-}k$-category, which we call $\cT(W, \cN)(D)$.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1409
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1410
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1411
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1412
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1413
We will use a simple special case of the above 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1414
construction to define tensor products 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1415
of modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1416
Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1417
(If $k=1$ and our manifolds are oriented, then one should be 
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1418
a left module and the other a right module.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1419
Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1420
Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1421
$n{-}1$-category $\cT(J, \{\cM_1, \cM_2\})$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1422
This of course depends (functorially)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1423
on the choice of 1-ball $J$.
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1424
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1425
We will define a more general self tensor product (categorified coend) below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1426
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1427
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1428
\subsection{Morphisms of $A_\infty$ $1$-category modules}
288
6c1b3c954c7e more deligne.tex
Kevin Walker <kevin@canyon23.net>
parents: 286
diff changeset
  1429
\label{ss:module-morphisms}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1430
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1431
In order to state and prove our version of the higher dimensional Deligne conjecture
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1432
(Section \ref{sec:deligne}),
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1433
we need to define morphisms of $A_\infty$ $1$-category modules and establish
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1434
some of their elementary properties.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1435
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1436
To motivate the definitions which follow, consider algebras $A$ and $B$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1437
right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1438
\begin{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1439
	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1440
	f &\mapsto& [x \mapsto f(x\ot -)] \\
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
  1441
	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1442
\end{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1443
If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1444
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1445
	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1446
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1447
We will establish the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1448
and modules $\cM_\cC$ and $_\cC\cN$,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1449
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1450
	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1451
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1452
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1453
In the next few paragraphs we define the objects appearing in the above equation:
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1454
$\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1455
$\hom_\cC$.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1456
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1457
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1458
\def\olD{{\overline D}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1459
\def\cbar{{\bar c}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1460
In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1461
for general $n$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1462
For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1463
and their gluings (antirefinements).
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1464
(This tensor product depends functorially on the choice of $J$.)
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1465
To a subdivision $D$
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1466
\[
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1467
	J = I_1\cup \cdots\cup I_p
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1468
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1469
we associate the chain complex
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1470
\[
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1471
	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1472
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1473
To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1474
module actions of $\cC$ on $\cM$ and $\cN$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1475
The underlying graded vector space of the homotopy colimit is
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1476
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1477
	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1478
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1479
where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1480
runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1481
We will denote an element of the summand indexed by $\olD$ by
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1482
$\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1483
The boundary map is given by
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1484
\begin{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1485
	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1486
	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1487
	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1488
\end{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1489
where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1490
boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1491
and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1492
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1493
$(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1494
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1495
	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1496
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1497
where $(\psi(D_0)[l])^*$ denotes the linear dual.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1498
The boundary is given by
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1499
\begin{align}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1500
\label{eq:tensor-product-boundary}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1501
	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1502
						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1503
			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1504
\end{align}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1505
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1506
Next we define the dual module $(_\cC\cN)^*$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1507
This will depend on a choice of interval $J$, just as the tensor product did.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1508
Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1509
to chain complexes.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1510
Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1511
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1512
	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1513
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1514
where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1515
to the right-marked interval $J\setmin K$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1516
This extends to a functor from all left-marked intervals (not just those contained in $J$).
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1517
\nn{need to say more here; not obvious how homeomorphisms act}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1518
It's easy to verify the remaining module axioms.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1519
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1520
Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1521
as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1522
Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1523
Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1524
Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1525
Then for each such $\olD$ we have a degree $l$ map
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1526
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1527
	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1528
	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1529
\end{eqnarray*}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1530
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1531
We are almost ready to give the definition of morphisms between arbitrary modules
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1532
$\cX_\cC$ and $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1533
Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1534
To fix this, we define subdivisions as antirefinements of left-marked intervals.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1535
Subdivisions are just the obvious thing, but antirefinements are defined to mimic
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1536
the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1537
omitted.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1538
More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1539
gluing subintervals together and/or omitting some of the rightmost subintervals.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1540
(See Figure \ref{fig:lmar}.)
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1541
\begin{figure}[t]$$
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1542
\definecolor{arcolor}{rgb}{.75,.4,.1}
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1543
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1544
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1545
\draw (0,0) -- (2,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1546
\draw (1,0.1) -- (1,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1547
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1548
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1549
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1550
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1551
\draw (0,1) -- (2,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1552
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1553
\qquad
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1554
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1555
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1556
\draw (0,0) -- (2,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1557
\draw (1,0.1) -- (1,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1558
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1559
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1560
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1561
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1562
\draw (0,1) -- (1,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1563
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1564
\qquad
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1565
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1566
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1567
\draw (0,0) -- (3,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1568
\foreach \x in {0.5, 1.0, 1.25, 1.5, 2.0, 2.5} {
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1569
	\draw (\x,0.1) -- (\x,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1570
}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1571
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1572
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1573
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1574
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1575
\draw (0,1) -- (2,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1576
\foreach \x in {1.0, 1.5} {
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1577
	\draw (\x,1.1) -- (\x,0.9);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1578
}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1579
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1580
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1581
$$
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1582
\caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1583
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1584
Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1585
The underlying vector space is 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1586
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1587
	\prod_l \prod_{\olD} \hom[l]\left(
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1588
				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1589
							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1590
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1591
where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1592
(but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1593
$\hom[l](- \to -)$ means graded linear maps of degree $l$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1594
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1595
\nn{small issue (pun intended): 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1596
the above is a vector space only if the class of subdivisions is a set, e.g. only if
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1597
all of our left-marked intervals are contained in some universal interval (like $J$ above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1598
perhaps we should give another version of the definition in terms of natural transformations of functors.}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1599
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1600
Abusing notation slightly, we will denote elements of the above space by $g$, with
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1601
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1602
	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1603
\]
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1604
For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1605
where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1606
$\cbar''$ corresponds to the subintervals
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1607
which are dropped off the right side.
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1608
(If no such subintervals are dropped, then $\cbar''$ is empty.)
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1609
Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1610
we have
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1611
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1612
	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1613
	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl''(g((\bd_0\olD)\ot \gl'(x\ot\cbar'))\ot\cbar'') .
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1614
\end{eqnarray*}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1615
\nn{put in signs, rearrange terms to match order in previous formulas}
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1616
Here $\gl''$ denotes the module action in $\cY_\cC$
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1617
and $\gl'$ denotes the module action in $\cX_\cC$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1618
This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1619
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1620
Note that if $\bd g = 0$, then each 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1621
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1622
	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1623
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1624
constitutes a null homotopy of
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1625
$g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1626
should be interpreted as above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1627
410
Kevin Walker <kevin@canyon23.net>
parents: 402
diff changeset
  1628
Define a {\it strong morphism} 
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1629
of modules to be a collection of {\it chain} maps
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1630
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1631
	h_K : \cX(K)\to \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1632
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1633
for each left-marked interval $K$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1634
These are required to commute with gluing;
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1635
for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes:
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1636
\[ \xymatrix{
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1637
	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1638
							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1639
								\ar[d]^{\gl} \\
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1640
	\cX(K) \ar[r]^{h_{K}} & \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1641
} \]
410
Kevin Walker <kevin@canyon23.net>
parents: 402
diff changeset
  1642
Given such an $h$ we can construct a morphism $g$, with $\bd g = 0$, as follows.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1643
Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1644
If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1645
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1646
	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1647
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1648
Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1649
If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1650
If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1651
that each $h_K$ is a chain map.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1652
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1653
We can think of a general closed element $g\in \hom_\cC(\cX_\cC \to \cY_\cC)$
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1654
as a collection of chain maps which commute with the module action (gluing) up to coherent homotopy.
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1655
\nn{ideally should give explicit examples of this in low degrees, 
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1656
but skip that for now.}
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1657
\nn{should also say something about composition of morphisms; well-defined up to homotopy, or maybe
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1658
should make some arbitrary choice}
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1659
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1660
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1661
Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1662
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1663
	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1664
\]
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1665
\nn{...}
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1666
More generally, we have a chain map
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1667
\[
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1668
	\hom_\cC(\cX_\cC \to \cY_\cC) \ot \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1669
\]
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1670
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1671
\nn{not sure whether to do low degree examples or try to state the general case; ideally both,
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1672
but maybe just low degrees for now.}
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1673
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1674
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1675
\nn{...}
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1676
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1677
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1678
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1679
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1680
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1681
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1682
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1683
\nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1684
of the $\cC$ functors which commute with gluing only up to higher morphisms?
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1685
perhaps worth having both definitions available.
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1686
certainly the simple kind (strictly commute with gluing) arise in nature.}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1687
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1688
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1689
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1690
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1691
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1692
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1693
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1694
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1695
\subsection{The $n{+}1$-category of sphere modules}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 211
diff changeset
  1696
\label{ssec:spherecat}
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1697
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1698
In this subsection we define an $n{+}1$-category $\cS$ of ``sphere modules" 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1699
whose objects are $n$-categories.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1700
When $n=2$
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1701
this is closely related to the familiar $2$-category of algebras, bimodules and intertwiners.
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1702
While it is appropriate to call an $S^0$ module a bimodule,
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1703
this is much less true for higher dimensional spheres, 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1704
so we prefer the term ``sphere module" for the general case.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1705
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1706
The results of this subsection are not needed for the rest of the paper,
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1707
so we will skimp on details in a couple of places. We have included this mostly for the sake of comparing our notion of a topological $n$-category to other definitions.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1708
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1709
For simplicity, we will assume that $n$-categories are enriched over $\c$-vector spaces.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1710
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1711
The $0$- through $n$-dimensional parts of $\cS$ are various sorts of modules, and we describe
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1712
these first.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1713
The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1714
of  $1$-category modules associated to decorated $n$-balls.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1715
We will see below that in order for these $n{+}1$-morphisms to satisfy all of
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1716
the axioms of an $n{+}1$-category (in particular, duality requirements), we will have to assume
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1717
that our $n$-categories and modules have non-degenerate inner products.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1718
(In other words, we need to assume some extra duality on the $n$-categories and modules.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1719
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1720
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1721
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1722
Our first task is to define an $n$-category $m$-sphere module, for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1723
These will be defined in terms of certain classes of marked balls, very similarly
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1724
to the definition of $n$-category modules above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1725
(This, in turn, is very similar to our definition of $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1726
Because of this similarity, we only sketch the definitions below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1727
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1728
We start with $0$-sphere modules, which also could reasonably be called (categorified) bimodules.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1729
(For $n=1$ they are precisely bimodules in the usual, uncategorified sense.)
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1730
Define a $0$-marked $k$-ball, $1\le k \le n$, to be a pair  $(X, M)$ homeomorphic to the standard
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1731
$(B^k, B^{k-1})$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1732
See Figure \ref{feb21a}.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1733
Another way to say this is that $(X, M)$ is homeomorphic to $B^{k-1}\times([-1,1], \{0\})$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1734
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1735
\begin{figure}[!ht]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1736
$$\tikz[baseline,line width=2pt]{\draw[blue] (-2,0)--(2,0); \fill[red] (0,0) circle (0.1);} \qquad \qquad \tikz[baseline,line width=2pt]{\draw[blue][fill=blue!30!white] (0,0) circle (2 and 1); \draw[red] (0,1)--(0,-1);}$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1737
\caption{0-marked 1-ball and 0-marked 2-ball}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1738
\label{feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1739
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1740
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1741
The $0$-marked balls can be cut into smaller balls in various ways.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1742
We only consider those decompositions in which the smaller balls are either
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1743
$0$-marked (i.e. intersect the $0$-marking of the large ball in a disc) 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1744
or plain (don't intersect the $0$-marking of the large ball).
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1745
We can also take the boundary of a $0$-marked ball, which is $0$-marked sphere.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1746
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1747
Fix $n$-categories $\cA$ and $\cB$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1748
These will label the two halves of a $0$-marked $k$-ball.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1749
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1750
An $n$-category $0$-sphere module $\cM$ over the $n$-categories $\cA$ and $\cB$ is a collection of functors $\cM_k$ from the category
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1751
of $0$-marked $k$-balls, $1\le k \le n$,
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1752
(with the two halves labeled by $\cA$ and $\cB$) to the category of sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1753
If $k=n$ these sets should be enriched to the extent $\cA$ and $\cB$ are.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1754
Given a decomposition of a $0$-marked $k$-ball $X$ into smaller balls $X_i$, we have
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1755
morphism sets $\cA_k(X_i)$ (if $X_i$ lies on the $\cA$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1756
or $\cB_k(X_i)$ (if $X_i$ lies on the $\cB$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1757
or $\cM_k(X_i)$ (if $X_i$ intersects the marking and is therefore a smaller 0-marked ball).
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
  1758
Corresponding to this decomposition we have a composition (or ``gluing") map
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1759
from the product (fibered over the boundary data) of these various sets into $\cM_k(X)$.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1760
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1761
\medskip
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1762
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1763
Part of the structure of an $n$-category 0-sphere module $\cM$  is captured by saying it is
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1764
a collection $\cD^{ab}$ of $n{-}1$-categories, indexed by pairs $(a, b)$ of objects (0-morphisms)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1765
of $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1766
Let $J$ be some standard 0-marked 1-ball (i.e.\ an interval with a marked point in its interior).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1767
Given a $j$-ball $X$, $0\le j\le n-1$, we define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1768
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1769
	\cD(X) \deq \cM(X\times J) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1770
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1771
The product is pinched over the boundary of $J$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1772
The set $\cD$ breaks into ``blocks" according to the restrictions to the pinched points of $X\times J$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1773
(see Figure \ref{feb21b}).
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1774
These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$.
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1775
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1776
\begin{figure}[!ht]
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1777
$$
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1778
\begin{tikzpicture}[blue,line width=2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1779
\draw (0,1) -- (0,-1) node[below] {$X$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1780
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1781
\draw (2,0) -- (4,0) node[below] {$J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1782
\fill[red] (3,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1783
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1784
\draw[fill=blue!30!white] (6,0) node(a) {} arc (135:90:4) node(top) {} arc (90:45:4) node(b) {} arc (-45:-90:4) node(bottom) {} arc(-90:-135:4);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1785
\draw[red] (top.center) -- (bottom.center);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1786
\fill (a) circle (0.1) node[left] {\color{green!50!brown} $a$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1787
\fill (b) circle (0.1) node[right] {\color{green!50!brown} $b$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1788
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1789
\path (bottom) node[below]{$X \times J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1790
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1791
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1792
$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1793
\caption{The pinched product $X\times J$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1794
\label{feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1795
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1796
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1797
More generally, consider an interval with interior marked points, and with the complements
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1798
of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1799
by $\cA_i$-$\cA_{i+1}$ bimodules $\cM_i$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1800
(See Figure \ref{feb21c}.)
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1801
To this data we can apply the coend construction as in Subsection \ref{moddecss} above
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1802
to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1803
This amounts to a definition of taking tensor products of $0$-sphere module over $n$-categories.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1804
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1805
\begin{figure}[!ht]
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1806
$$
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1807
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1808
\draw[blue] (0,0) -- (6,0);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1809
\foreach \x/\n in {0.5/0,1.5/1,3/2,4.5/3,5.5/4} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1810
	\path (\x,0)  node[below] {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1811
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1812
\foreach \x/\n in {1/0,2/1,4/2,5/3} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1813
	\fill[red] (\x,0) circle (0.1) node[above] {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1814
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1815
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1816
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1817
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1818
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1819
\draw[blue] (0,0) circle (2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1820
\foreach \q/\n in {-45/0,90/1,180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1821
	\path (\q:2.4)  node {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1822
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1823
\foreach \q/\n in {60/0,120/1,-120/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1824
	\fill[red] (\q:2) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1825
	\path (\q:2.4) node {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1826
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1827
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1828
$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1829
\caption{Marked and labeled 1-manifolds}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1830
\label{feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1831
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1832
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1833
We could also similarly mark and label a circle, obtaining an $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1834
associated to the marked and labeled circle.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1835
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1836
If the circle is divided into two intervals, we can think of this $n{-}1$-category
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1837
as the 2-sided tensor product of the two bimodules associated to the two intervals.
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1838
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1839
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1840
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1841
Next we define $n$-category 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1842
These are just representations of (modules for) $n{-}1$-categories associated to marked and labeled 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1843
circles (1-spheres) which we just introduced.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1844
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1845
Equivalently, we can define 1-sphere modules in terms of 1-marked $k$-balls, $2\le k\le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1846
Fix a marked (and labeled) circle $S$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1847
Let $C(S)$ denote the cone of $S$, a marked 2-ball (Figure \ref{feb21d}).
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1848
\nn{I need to make up my mind whether marked things are always labeled too.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1849
For the time being, let's say they are.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1850
A 1-marked $k$-ball is anything homeomorphic to $B^j \times C(S)$, $0\le j\le n-2$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1851
where $B^j$ is the standard $j$-ball.
399
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1852
A 1-marked $k$-ball can be decomposed in various ways into smaller balls, which are either 
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1853
(a) smaller 1-marked $k$-balls, (b) 0-marked $k$-balls, or (c) plain $k$-balls.
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1854
(See Figure xxxx.)
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1855
We now proceed as in the above module definitions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1856
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1857
\begin{figure}[!ht]
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1858
$$
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1859
\begin{tikzpicture}[baseline,line width = 2pt]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1860
\draw[blue][fill=blue!15!white] (0,0) circle (2);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1861
\fill[red] (0,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1862
\foreach \qm/\qa/\n in {70/-30/0, 120/95/1, -120/180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1863
	\draw[red] (0,0) -- (\qm:2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1864
	\path (\qa:1) node {\color{green!50!brown} $\cA_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1865
	\path (\qm+20:2.5) node(M\n) {\color{green!50!brown} $\cM_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1866
	\draw[line width=1pt, green!50!brown, ->] (M\n.\qm+135) to[out=\qm+135,in=\qm+90] (\qm+5:1.3);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1867
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1868
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1869
$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1870
\caption{Cone on a marked circle}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1871
\label{feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1872
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1873
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1874
A $n$-category 1-sphere module is, among other things, an $n{-}2$-category $\cD$ with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1875
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1876
	\cD(X) \deq \cM(X\times C(S)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1877
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1878
The product is pinched over the boundary of $C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1879
$\cD$ breaks into ``blocks" according to the restriction to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1880
image of $\bd C(S) = S$ in $X\times C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1881
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1882
More generally, consider a 2-manifold $Y$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1883
(e.g.\ 2-ball or 2-sphere) marked by an embedded 1-complex $K$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1884
The components of $Y\setminus K$ are labeled by $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1885
the edges of $K$ are labeled by 0-sphere modules, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1886
and the 0-cells of $K$ are labeled by 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1887
We can now apply the coend construction and obtain an $n{-}2$-category.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1888
If $Y$ has boundary then this $n{-}2$-category is a module for the $n{-}1$-category
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1889
associated to the (marked, labeled) boundary of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1890
In particular, if $\bd Y$ is a 1-sphere then we get a 1-sphere module as defined above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1891
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1892
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1893
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1894
It should now be clear how to define $n$-category $m$-sphere modules for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1895
For example, there is an $n{-}2$-category associated to a marked, labeled 2-sphere,
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1896
and a 2-sphere module is a representation of such an $n{-}2$-category.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1897
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1898
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1899
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1900
We can now define the $n$-or-less-dimensional part of our $n{+}1$-category $\cS$.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1901
Choose some collection of $n$-categories, then choose some collections of bimodules between
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1902
these $n$-categories, then choose some collection of 1-sphere modules for the various
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1903
possible marked 1-spheres labeled by the $n$-categories and bimodules, and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1904
Let $L_i$ denote the collection of $i{-}1$-sphere modules we have chosen.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1905
(For convenience, we declare a $(-1)$-sphere module to be an $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1906
There is a wide range of possibilities.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1907
The set $L_0$ could contain infinitely many $n$-categories or just one.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1908
For each pair of $n$-categories in $L_0$, $L_1$ could contain no bimodules at all or 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1909
it could contain several.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1910
The only requirement is that each $k$-sphere module be a module for a $k$-sphere $n{-}k$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1911
constructed out of labels taken from $L_j$ for $j<k$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1912
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1913
We now define $\cS(X)$, for $X$ a ball of dimension at most $n$, to be the set of all 
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1914
cell-complexes $K$ embedded in $X$, with the codimension-$j$ parts of $(X, K)$ labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1915
by elements of $L_j$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1916
As described above, we can think of each decorated $k$-ball as defining a $k{-}1$-sphere module
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1917
for the $n{-}k{+}1$-category associated to its decorated boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1918
Thus the $k$-morphisms of $\cS$ (for $k\le n$) can be thought 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1919
of as $n$-category $k{-}1$-sphere modules 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1920
(generalizations of bimodules).
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1921
On the other hand, we can equally well think of the $k$-morphisms as decorations on $k$-balls, 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1922
and from this point of view it is clear that they satisfy all of the axioms of an
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1923
$n{+}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1924
(All of the axioms for the less-than-$n{+}1$-dimensional part of an $n{+}1$-category, that is.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1925
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1926
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1927
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1928
Next we define the $n{+}1$-morphisms of $\cS$.
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1929
The construction of the 0- through $n$-morphisms was easy and tautological, but the 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1930
$n{+}1$-morphisms will require some effort and combinatorial topology, as well as additional
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1931
duality assumptions on the lower morphisms. These are required because we define the spaces of $n{+}1$-morphisms by making arbitrary choices of incoming and outgoing boundaries for each $n$-ball. The additional duality assumptions are needed to prove independence of our definition form these choices.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1932
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1933
Let $X$ be an $n{+}1$-ball, and let $c$ be a decoration of its boundary
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1934
by a cell complex labeled by 0- through $n$-morphisms, as above.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1935
Choose an $n{-}1$-sphere $E\sub \bd X$ which divides
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1936
$\bd X$ into ``incoming" and ``outgoing" boundary $\bd_-X$ and $\bd_+X$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1937
Let $E_c$ denote $E$ decorated by the restriction of $c$ to $E$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1938
Recall from above the associated 1-category $\cS(E_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1939
We can also have $\cS(E_c)$ modules $\cS(\bd_-X_c)$ and $\cS(\bd_+X_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1940
Define
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1941
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1942
	\cS(X; c; E) \deq \hom_{\cS(E_c)}(\cS(\bd_-X_c), \cS(\bd_+X_c)) .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1943
\]
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1944
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1945
We will show that if the sphere modules are equipped with a `compatible family of 
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1946
non-degenerate inner products', then there is a coherent family of isomorphisms
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1947
$\cS(X; c; E) \cong \cS(X; c; E')$ for all pairs of choices $E$ and $E'$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1948
This will allow us to define $\cS(X; e)$ independently of the choice of $E$.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1949
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1950
First we must define ``inner product", ``non-degenerate" and ``compatible".
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1951
Let $Y$ be a decorated $n$-ball, and $\ol{Y}$ it's mirror image.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1952
(We assume we are working in the unoriented category.)
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1953
Let $Y\cup\ol{Y}$ denote the decorated $n$-sphere obtained by gluing $Y$ and $\ol{Y}$
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1954
along their common boundary.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1955
An {\it inner product} on $\cS(Y)$ is a dual vector
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1956
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1957
	z_Y : \cS(Y\cup\ol{Y}) \to \c.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1958
\]
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1959
We will also use the notation
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1960
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1961
	\langle a, b\rangle \deq z_Y(a\bullet \ol{b}) \in \c .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1962
\]
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1963
An inner product induces a linear map
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1964
\begin{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1965
	\varphi: \cS(Y) &\to& \cS(Y)^* \\
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1966
	a &\mapsto& \langle a, \cdot \rangle
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1967
\end{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1968
which satisfies, for all morphisms $e$ of $\cS(\bd Y)$,
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1969
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1970
	\varphi(ae)(b) = \langle ae, b \rangle = z_Y(a\bullet e\bullet b) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1971
			\langle a, eb \rangle = \varphi(a)(eb) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1972
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1973
In other words, $\varphi$ is a map of $\cS(\bd Y)$ modules.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1974
An inner product is {\it non-degenerate} if $\varphi$ is an isomorphism.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1975
This implies that $\cS(Y; c)$ is finite dimensional for all boundary conditions $c$.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1976
(One can think of these inner products as giving some duality in dimension $n{+}1$;
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1977
heretofore we have only assumed duality in dimensions 0 through $n$.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1978
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1979
Next we define compatibility.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1980
Let $Y = Y_1\cup Y_2$ with $D = Y_1\cap Y_2$.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1981
Let $X_1$ and $X_2$ be the two components of $Y\times I$ cut along
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1982
$D\times I$, in both cases using the pinched product.
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1983
(Here we are overloading notation and letting $D$ denote both a decorated and an undecorated
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1984
manifold.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1985
We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1986
(see Figure \ref{jun23a}).
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1987
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1988
\begin{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1989
\mathfig{.6}{tempkw/jun23a}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1990
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1991
\caption{$Y\times I$ sliced open}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1992
\label{jun23a}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  1993
\end{figure}
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1994
Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1995
which agree on their boundaries, we can evaluate
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1996
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1997
	z_{Y_i}(a_i\bullet b_i\bullet v) \in \c .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1998
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1999
(This requires a choice of homeomorphism $Y_i \cup \ol{Y}_i \cup (D\times I) \cong
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2000
Y_i \cup \ol{Y}_i$, but the value of $z_{Y_i}$ is independent of this choice.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2001
We can think of $z_{Y_i}$ as giving a function
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2002
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2003
	\psi_i : \cS(Y_i) \ot \cS(\ol{Y}_i) \to \cS(D\times I)^* 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2004
					\stackrel{\varphi\inv}{\longrightarrow} \cS(D\times I) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2005
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2006
We can now finally define a family of inner products to be {\it compatible} if
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2007
for all decompositions $Y = Y_1\cup Y_2$ as above and all $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2008
we have
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2009
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2010
	z_Y(a_1\bullet a_2\bullet b_1\bullet b_2) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2011
				z_{D\times I}(\psi_1(a_1\ot b_1)\bullet \psi_2(a_2\ot b_2)) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2012
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2013
In other words, the inner product on $Y$ is determined by the inner products on
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2014
$Y_1$, $Y_2$ and $D\times I$.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2015
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2016
Now we show how to unambiguously identify $\cS(X; c; E)$ and $\cS(X; c; E')$ for any
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2017
two choices of $E$ and $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2018
Consider first the case where $\bd X$ is decomposed as three $n$-balls $A$, $B$ and $C$,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2019
with $E = \bd(A\cup B)$ and $E' = \bd A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2020
We must provide an isomorphism between $\cS(X; c; E) = \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2021
and $\cS(X; c; E') = \hom(\cS(C\cup \ol{B}), \cS(A))$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2022
Let $D = B\cap A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2023
Then as above we can construct a map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2024
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2025
	\psi: \cS(B)\ot\cS(\ol{B}) \to \cS(D\times I) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2026
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2027
Given $f\in \hom(\cS(C), \cS(A\cup B))$ we define $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2028
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2029
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2030
	\cS(C\cup \ol{B}) \stackrel{f\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2031
		\cS(A\cup B\cup \ol{B})  \stackrel{\id\ot\psi}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2032
			\cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2033
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2034
(See Figure \ref{jun23b}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2035
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2036
\begin{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2037
\mathfig{.5}{tempkw/jun23b}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2038
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2039
\caption{Moving $B$ from top to bottom}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2040
\label{jun23b}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2041
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2042
Let $D' = B\cap C$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2043
Using the inner products there is an adjoint map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2044
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2045
	\psi^\dagger: \cS(D'\times I) \to \cS(\ol{B})\ot\cS(B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2046
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2047
Given $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$ we define $f\in \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2048
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2049
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2050
	\cS(C) \stackrel{\cong}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2051
		\cS(C\cup(D'\times I)) \stackrel{\id\ot\psi^\dagger}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2052
			\cS(C\cup \ol{B}\cup B)   \stackrel{f'\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2053
				\cS(A\cup B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2054
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2055
(See Figure \ref{jun23c}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2056
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2057
\begin{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2058
\mathfig{.5}{tempkw/jun23c}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2059
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2060
\caption{Moving $B$ from bottom to top}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2061
\label{jun23c}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2062
\end{figure}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2063
Let $D' = B\cap C$.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2064
It is not hard too show that the above two maps are mutually inverse.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2065
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2066
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2067
Any two choices of $E$ and $E'$ are related by a series of modifications as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2068
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2069
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2070
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2071
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2072
$E$ and $E'$ are isotopic, and any isotopy is 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2073
homotopic to a composition of small isotopies which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2074
(a) supported away from $E$, or (b) modify $E$ in the simple manner described above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2075
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2076
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2077
It follows from the lemma that we can construct an isomorphism
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2078
between $\cS(X; c; E)$ and $\cS(X; c; E')$ for any pair $E$, $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2079
This construction involves on a choice of simple ``moves" (as above) to transform
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2080
$E$ to $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2081
We must now show that the isomorphism does not depend on this choice.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2082
We will show below that it suffice to check two ``movie moves".
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2083
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2084
The first movie move is to push $E$ across an $n$-ball $B$ as above, then push it back.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2085
The result is equivalent to doing nothing.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2086
As we remarked above, the isomorphisms corresponding to these two pushes are mutually
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2087
inverse, so we have invariance under this movie move.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2088
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2089
The second movie move replaces to successive pushes in the same direction,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2090
across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$.
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2091
(See Figure \ref{jun23d}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2092
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2093
\begin{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2094
\mathfig{.9}{tempkw/jun23d}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2095
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2096
\caption{A movie move}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2097
\label{jun23d}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2098
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2099
Invariance under this movie move follows from the compatibility of the inner
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2100
product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.
411
98b8559b0b7a starting to work on tqdftreview.tex
Kevin Walker <kevin@canyon23.net>
parents: 410
diff changeset
  2101
\nn{should also say something about locality/distant-commutativity}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2102
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2103
If $n\ge 2$, these two movie move suffice:
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2104
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2105
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2106
Assume $n\ge 2$ and fix $E$ and $E'$ as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2107
The any two sequences of elementary moves connecting $E$ to $E'$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2108
are related by a sequence of the two movie moves defined above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2109
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2110
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2111
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2112
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2113
Consider a two parameter family of diffeomorphisms (one parameter family of isotopies) 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2114
of $\bd X$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2115
Up to homotopy,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2116
such a family is homotopic to a family which can be decomposed 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2117
into small families which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2118
(a) supported away from $E$, 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2119
(b) have boundaries corresponding to the two movie moves above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2120
Finally, observe that the space of $E$'s is simply connected.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2121
(This fails for $n=1$.)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2122
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2123
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2124
For $n=1$ we have to check an additional ``global" relations corresponding to 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2125
rotating the 0-sphere $E$ around the 1-sphere $\bd X$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2126
\nn{should check this global move, or maybe cite Frobenius reciprocity result}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2127
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2128
\nn{...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2129
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2130
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2131
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2132
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2133
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  2134
\nn{to be continued...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2135
\medskip
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2136
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2137
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2138
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2139
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2140
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2141
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2142
Stuff that remains to be done (either below or in an appendix or in a separate section or in
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2143
a separate paper):
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2144
\begin{itemize}
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2145
\item discuss Morita equivalence
139
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 134
diff changeset
  2146
\item functors
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2147
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2148
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  2149