text/ncat.tex
author Kevin Walker <kevin@canyon23.net>
Sun, 18 Jul 2010 08:07:50 -0600
changeset 447 ba4f86b15ff0
parent 446 901a7c79976b
child 448 c3c8fb292934
permissions -rw-r--r--
more a-inf section
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
     4
\def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
312
5bb1cbe49c40 misc. minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 311
diff changeset
     6
\section{$n$-categories and their modules}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
\label{sec:ncats}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
     9
\subsection{Definition of $n$-categories}
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
    10
\label{ss:n-cat-def}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
    11
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
Before proceeding, we need more appropriate definitions of $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    13
$A_\infty$ $n$-categories, modules for these, and tensor products of these modules.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    14
(As is the case throughout this paper, by ``$n$-category" we mean some notion of
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    15
a ``weak" $n$-category with ``strong duality".)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    16
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    17
The definitions presented below tie the categories more closely to the topology
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    18
and avoid combinatorial questions about, for example, the minimal sufficient
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    19
collections of generalized associativity axioms; we prefer maximal sets of axioms to minimal sets.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    20
For examples of topological origin
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    21
(e.g.\ categories whose morphisms are maps into spaces or decorated balls), 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    22
it is easy to show that they
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    23
satisfy our axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    24
For examples of a more purely algebraic origin, one would typically need the combinatorial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    25
results that we have avoided here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    26
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    27
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    28
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    29
There are many existing definitions of $n$-categories, with various intended uses.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    30
In any such definition, there are sets of $k$-morphisms for each $0 \leq k \leq n$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    31
Generally, these sets are indexed by instances of a certain typical shape. 
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
    32
Some $n$-category definitions model $k$-morphisms on the standard bihedron (interval, bigon, and so on).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    33
Other definitions have a separate set of 1-morphisms for each interval $[0,l] \sub \r$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    34
a separate set of 2-morphisms for each rectangle $[0,l_1]\times [0,l_2] \sub \r^2$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    35
and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    36
(This allows for strict associativity.)
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    37
Still other definitions (see, for example, \cite{MR2094071})
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
model the $k$-morphisms on more complicated combinatorial polyhedra.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    39
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    40
For our definition, we will allow our $k$-morphisms to have any shape, so long as it is homeomorphic to the standard $k$-ball.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    41
Thus we associate a set of $k$-morphisms $\cC_k(X)$ to any $k$-manifold $X$ homeomorphic 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    42
to the standard $k$-ball.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    43
By ``a $k$-ball" we mean any $k$-manifold which is homeomorphic to the 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    44
standard $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    45
We {\it do not} assume that it is equipped with a 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    46
preferred homeomorphism to the standard $k$-ball, and the same applies to ``a $k$-sphere" below.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    47
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    48
Given a homeomorphism $f:X\to Y$ between $k$-balls (not necessarily fixed on 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    49
the boundary), we want a corresponding
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    50
bijection of sets $f:\cC(X)\to \cC(Y)$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    51
(This will imply ``strong duality", among other things.) Putting these together, we have
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    52
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    53
\begin{axiom}[Morphisms]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    54
\label{axiom:morphisms}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    55
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    56
the category of $k$-balls and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    57
homeomorphisms to the category of sets and bijections.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    58
\end{axiom}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    59
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    60
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    61
(Note: We usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    62
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    63
We are being deliberately vague about what flavor of $k$-balls
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    64
we are considering.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    65
They could be unoriented or oriented or Spin or $\mbox{Pin}_\pm$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    66
They could be topological or PL or smooth.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    67
%\nn{need to check whether this makes much difference}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
(If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
    69
to be fussier about corners and boundaries.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    70
For each flavor of manifold there is a corresponding flavor of $n$-category.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    71
For simplicity, we will concentrate on the case of PL unoriented manifolds.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    73
(The ambitious reader may want to keep in mind two other classes of balls.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    74
The first is balls equipped with a map to some other space $Y$ (c.f. \cite{MR2079378}). 
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    75
This will be used below to describe the blob complex of a fiber bundle with
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    76
base space $Y$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    77
The second is balls equipped with a section of the tangent bundle, or the frame
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    78
bundle (i.e.\ framed balls), or more generally some flag bundle associated to the tangent bundle.
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    79
These can be used to define categories with less than the ``strong" duality we assume here,
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    80
though we will not develop that idea fully in this paper.)
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    81
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    82
Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    83
of morphisms).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    84
The 0-sphere is unusual among spheres in that it is disconnected.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    85
Correspondingly, for 1-morphisms it makes sense to distinguish between domain and range.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    86
(Actually, this is only true in the oriented case, with 1-morphisms parameterized
359
6224e50c9311 metric independence for homeo action (proof done now)
Kevin Walker <kevin@canyon23.net>
parents: 356
diff changeset
    87
by {\it oriented} 1-balls.)
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    88
For $k>1$ and in the presence of strong duality the division into domain and range makes less sense.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    89
For example, in a pivotal tensor category, there are natural isomorphisms $\Hom{}{A}{B \tensor C} \isoto \Hom{}{B^* \tensor A}{C}$, etc. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    90
(sometimes called ``Frobenius reciprocity''), which canonically identify all the morphism spaces which have the same boundary.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    91
We prefer to not make the distinction in the first place.
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    92
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    93
Instead, we will combine the domain and range into a single entity which we call the 
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    94
boundary of a morphism.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    95
Morphisms are modeled on balls, so their boundaries are modeled on spheres.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    96
In other words, we need to extend the functors $\cC_{k-1}$ from balls to spheres, for 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    97
$1\le k \le n$.
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
    98
At first it might seem that we need another axiom for this, but in fact once we have
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    99
all the axioms in this subsection for $0$ through $k-1$ we can use a colimit
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
   100
construction, as described in \S\ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   101
to spheres (and any other manifolds):
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   102
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   103
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   104
\label{lem:spheres}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   105
For each $1 \le k \le n$, we have a functor $\cl{\cC}_{k-1}$ from 
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   106
the category of $k{-}1$-spheres and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   107
homeomorphisms to the category of sets and bijections.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   108
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   109
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   110
We postpone the proof of this result until after we've actually given all the axioms.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   111
Note that defining this functor for some $k$ only requires the data described in Axiom \ref{axiom:morphisms} at level $k$, 
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   112
along with the data described in the other axioms at lower levels. 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   113
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   114
%In fact, the functors for spheres are entirely determined by the functors for balls and the subsequent axioms. (In particular, $\cC(S^k)$ is the colimit of $\cC$ applied to decompositions of $S^k$ into balls.) However, it is easiest to think of it as additional data at this point.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   115
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   116
\begin{axiom}[Boundaries]\label{nca-boundary}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   117
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cl{\cC}_{k-1}(\bd X)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   118
These maps, for various $X$, comprise a natural transformation of functors.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   119
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   120
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   121
(Note that the first ``$\bd$" above is part of the data for the category, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
while the second is the ordinary boundary of manifolds.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   123
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   124
Given $c\in\cl{\cC}(\bd(X))$, we will write $\cC(X; c)$ for $\bd^{-1}(c)$, those morphisms with specified boundary $c$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   125
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
Most of the examples of $n$-categories we are interested in are enriched in the following sense.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   127
The various sets of $n$-morphisms $\cC(X; c)$, for all $n$-balls $X$ and
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   128
all $c\in \cl{\cC}(\bd X)$, have the structure of an object in some auxiliary symmetric monoidal category
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   129
(e.g.\ vector spaces, or modules over some ring, or chain complexes),
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   130
\nn{actually, need both disj-union/sub and product/tensor-product; what's the name for this sort of cat?}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
and all the structure maps of the $n$-category should be compatible with the auxiliary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   132
category structure.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   133
Note that this auxiliary structure is only in dimension $n$;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   134
$\cC(Y; c)$ is just a plain set if $\dim(Y) < n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   135
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   136
\medskip
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   137
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   138
(In order to simplify the exposition we have concentrated on the case of 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   139
unoriented PL manifolds and avoided the question of what exactly we mean by 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   140
the boundary a manifold with extra structure, such as an oriented manifold.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   141
In general, all manifolds of dimension less than $n$ should be equipped with the germ
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   142
of a thickening to dimension $n$, and this germ should carry whatever structure we have 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   143
on $n$-manifolds.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   144
In addition, lower dimensional manifolds should be equipped with a framing
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   145
of their normal bundle in the thickening; the framing keeps track of which
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   146
side (iterated) bounded manifolds lie on.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   147
For example, the boundary of an oriented $n$-ball
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   148
should be an $n{-}1$-sphere equipped with an orientation of its once stabilized tangent
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   149
bundle and a choice of direction in this bundle indicating
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   150
which side the $n$-ball lies on.)
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   151
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   152
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   153
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   154
We have just argued that the boundary of a morphism has no preferred splitting into
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   155
domain and range, but the converse meets with our approval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   156
That is, given compatible domain and range, we should be able to combine them into
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   157
the full boundary of a morphism.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   158
The following lemma will follow from the colimit construction used to define $\cl{\cC}_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   159
on spheres.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   161
\begin{lem}[Boundary from domain and range]
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   162
\label{lem:domain-and-range}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   163
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   164
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   165
Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the 
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   166
two maps $\bd: \cC(B_i)\to \cl{\cC}(E)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   167
Then we have an injective map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   168
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   169
	\gl_E : \cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2) \into \cl{\cC}(S)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   170
\]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   171
which is natural with respect to the actions of homeomorphisms.
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   172
(When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   173
becomes a normal product.)
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   174
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   175
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   176
\begin{figure}[!ht]
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   177
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   178
\begin{tikzpicture}[%every label/.style={green}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   179
]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   180
\node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   181
\node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   182
\draw (S) arc  (-90:90:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   183
\draw (N) arc  (90:270:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   184
\node[left] at (-1,1) {$B_1$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   185
\node[right] at (1,1) {$B_2$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   186
\end{tikzpicture}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   187
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   188
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   189
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   190
Note that we insist on injectivity above. 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   191
The lemma follows from Definition \ref{def:colim-fields} and Lemma \ref{lem:colim-injective}.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   192
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   193
Let $\cl{\cC}(S)_E$ denote the image of $\gl_E$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   194
We will refer to elements of $\cl{\cC}(S)_E$ as ``splittable along $E$" or ``transverse to $E$". 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   195
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   196
If $X$ is a $k$-ball and $E \sub \bd X$ splits $\bd X$ into two $k{-}1$-balls $B_1$ and $B_2$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   197
as above, then we define $\cC(X)_E = \bd^{-1}(\cl{\cC}(\bd X)_E)$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   198
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   199
We will call the projection $\cl{\cC}(S)_E \to \cC(B_i)$
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   200
a {\it restriction} map and write $\res_{B_i}(a)$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   201
(or simply $\res(a)$ when there is no ambiguity), for $a\in \cl{\cC}(S)_E$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   202
More generally, we also include under the rubric ``restriction map" the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   203
the boundary maps of Axiom \ref{nca-boundary} above,
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   204
another class of maps introduced after Axiom \ref{nca-assoc} below, as well as any composition
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   205
of restriction maps.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   206
In particular, we have restriction maps $\cC(X)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   207
($i = 1, 2$, notation from previous paragraph).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   208
These restriction maps can be thought of as 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   209
domain and range maps, relative to the choice of splitting $\bd X = B_1 \cup_E B_2$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   210
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   211
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   212
Next we consider composition of morphisms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   213
For $n$-categories which lack strong duality, one usually considers
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   214
$k$ different types of composition of $k$-morphisms, each associated to a different direction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   215
(For example, vertical and horizontal composition of 2-morphisms.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   216
In the presence of strong duality, these $k$ distinct compositions are subsumed into 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
one general type of composition which can be in any ``direction".
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   218
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   219
\begin{axiom}[Composition]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   220
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   221
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   222
Let $E = \bd Y$, which is a $k{-}2$-sphere.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   223
Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   224
We have restriction (domain or range) maps $\cC(B_i)_E \to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   225
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   226
We have a map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   227
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   228
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   229
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   230
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   231
to the intersection of the boundaries of $B$ and $B_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   232
If $k < n$ we require that $\gl_Y$ is injective.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   233
(For $k=n$, see below.)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   234
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   235
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   236
\begin{figure}[!ht]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   237
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   238
\begin{tikzpicture}[%every label/.style={green},
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   239
				x=1.5cm,y=1.5cm]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   240
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   241
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   242
\draw (S) arc  (-90:90:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   243
\draw (N) arc  (90:270:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   244
\draw (N) -- (S);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   245
\node[left] at (-1/4,1) {$B_1$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   246
\node[right] at (1/4,1) {$B_2$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   247
\node at (1/6,3/2)  {$Y$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   248
\end{tikzpicture}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   249
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   250
\caption{From two balls to one ball.}\label{blah5}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   251
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   252
\begin{axiom}[Strict associativity] \label{nca-assoc}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   253
The composition (gluing) maps above are strictly associative.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   254
\end{axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   255
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   256
\nn{should say this means $N$ at a time, not just 3 at a time}
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   257
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   258
\begin{figure}[!ht]
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   259
$$\mathfig{.65}{ncat/strict-associativity}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   260
\caption{An example of strict associativity.}\label{blah6}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   261
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   262
We'll use the notations  $a\bullet b$ as well as $a \cup b$ for the glued together field $\gl_Y(a, b)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   263
In the other direction, we will call the projection from $\cC(B)_E$ to $\cC(B_i)_E$ 
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   264
a restriction map (one of many types of map so called) and write $\res_{B_i}(a)$ for $a\in \cC(B)_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   265
%Compositions of boundary and restriction maps will also be called restriction maps.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   266
%For example, if $B$ is a $k$-ball and $Y\sub \bd B$ is a $k{-}1$-ball, there is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   267
%restriction map from $\cC(B)_{\bd Y}$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   268
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   269
We will write $\cC(B)_Y$ for the image of $\gl_Y$ in $\cC(B)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   270
We will call elements of $\cC(B)_Y$ morphisms which are 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   271
``splittable along $Y$'' or ``transverse to $Y$''.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   272
We have $\cC(B)_Y \sub \cC(B)_E \sub \cC(B)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   273
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   274
More generally, let $\alpha$ be a subdivision of a ball $X$ into smaller balls.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   275
Let $\cC(X)_\alpha \sub \cC(X)$ denote the image of the iterated gluing maps from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   276
the smaller balls to $X$.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   277
We  say that elements of $\cC(X)_\alpha$ are morphisms which are ``splittable along $\alpha$".
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   278
In situations where the subdivision is notationally anonymous, we will write
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   279
$\cC(X)\spl$ for the morphisms which are splittable along (a.k.a.\ transverse to)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   280
the unnamed subdivision.
335
9bf409eb5040 mostly finished inserting \cl
Scott Morrison <scott@tqft.net>
parents: 334
diff changeset
   281
If $\beta$ is a subdivision of $\bd X$, we define $\cC(X)_\beta \deq \bd\inv(\cl{\cC}(\bd X)_\beta)$;
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   282
this can also be denoted $\cC(X)\spl$ if the context contains an anonymous
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   283
subdivision of $\bd X$ and no competing subdivision of $X$.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   284
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   285
The above two composition axioms are equivalent to the following one,
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   286
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   287
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   288
\xxpar{Multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   289
{Given any decomposition $B = B_1\cup\cdots\cup B_m$ of a $k$-ball
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   290
into small $k$-balls, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   291
map from an appropriate subset (like a fibered product) 
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   292
of $\cC(B_1)\spl\times\cdots\times\cC(B_m)\spl$ to $\cC(B)\spl$,
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   293
and these various $m$-fold composition maps satisfy an
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   294
operad-type strict associativity condition (Figure \ref{fig:operad-composition}).}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   295
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   296
\begin{figure}[!ht]
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   297
$$\mathfig{.8}{ncat/operad-composition}$$
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   298
\caption{Operad composition and associativity}\label{fig:operad-composition}\end{figure}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   299
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   300
The next axiom is related to identity morphisms, though that might not be immediately obvious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   301
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   302
\begin{axiom}[Product (identity) morphisms, preliminary version]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   303
For each $k$-ball $X$ and $m$-ball $D$, with $k+m \le n$, there is a map $\cC(X)\to \cC(X\times D)$, 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   304
usually denoted $a\mapsto a\times D$ for $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   305
These maps must satisfy the following conditions.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   306
\begin{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   307
\item
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   308
If $f:X\to X'$ and $\tilde{f}:X\times D \to X'\times D'$ are homeomorphisms such that the diagram
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   309
\[ \xymatrix{
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   310
	X\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & X'\times D' \ar[d]^{\pi} \\
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   311
	X \ar[r]^{f} & X'
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   312
} \]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   313
commutes, then we have 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   314
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   315
	\tilde{f}(a\times D) = f(a)\times D' .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   316
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   317
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   318
Product morphisms are compatible with gluing (composition) in both factors:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   319
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   320
	(a'\times D)\bullet(a''\times D) = (a'\bullet a'')\times D
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   321
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   322
and
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   323
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   324
	(a\times D')\bullet(a\times D'') = a\times (D'\bullet D'') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   325
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   326
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   327
Product morphisms are associative:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   328
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   329
	(a\times D)\times D' = a\times (D\times D') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   330
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   331
(Here we are implicitly using functoriality and the obvious homeomorphism
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   332
$(X\times D)\times D' \to X\times(D\times D')$.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   333
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   334
Product morphisms are compatible with restriction:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   335
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   336
	\res_{X\times E}(a\times D) = a\times E
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   337
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   338
for $E\sub \bd D$ and $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   339
\end{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   340
\end{axiom}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   341
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   342
We will need to strengthen the above preliminary version of the axiom to allow
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   343
for products which are ``pinched" in various ways along their boundary.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   344
(See Figure \ref{pinched_prods}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   345
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   346
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   347
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   348
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   349
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   350
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   351
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   352
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   353
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   354
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   355
\draw[blue,line width=1.5pt] (0,-3) -- (5.66,-3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   356
\draw[->,red,line width=2pt] (2.83,-1.5) -- (2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   357
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   358
\qquad \qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   359
\begin{tikzpicture}[baseline=-0.15cm]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   360
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   361
\path[clip] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   362
\draw[blue,line width=2pt] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   363
\foreach \x in {-6, -5.5, ..., 0} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   364
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   365
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   366
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   367
\draw[blue,line width=1.5pt] (-5.66,-3.15) -- (0,-3.15);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   368
\draw[->,red,line width=2pt] (-2.83,-1.5) -- (-2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   369
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   370
$$
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   371
\caption{Examples of pinched products}\label{pinched_prods}
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   372
\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   373
(The need for a strengthened version will become apparent in Appendix \ref{sec:comparing-defs}
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   374
where we construct a traditional category from a topological category.)
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   375
Define a {\it pinched product} to be a map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   376
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   377
	\pi: E\to X
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   378
\]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   379
such that $E$ is a $k{+}m$-ball, $X$ is a $k$-ball ($m\ge 1$), and $\pi$ is locally modeled
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   380
on a standard iterated degeneracy map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   381
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   382
	d: \Delta^{k+m}\to\Delta^k .
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   383
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   384
(We thank Kevin Costello for suggesting this approach.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   385
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   386
Note that for each interior point $x\in X$, $\pi\inv(x)$ is an $m$-ball,
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   387
and for for each boundary point $x\in\bd X$, $\pi\inv(x)$ is a ball of dimension
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   388
$l \le m$, with $l$ depending on $x$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   389
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   390
It is easy to see that a composition of pinched products is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   391
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   392
A {\it sub pinched product} is a sub-$m$-ball $E'\sub E$ such that the restriction
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   393
$\pi:E'\to \pi(E')$ is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   394
A {union} of pinched products is a decomposition $E = \cup_i E_i$
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   395
such that each $E_i\sub E$ is a sub pinched product.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   396
(See Figure \ref{pinched_prod_unions}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   397
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   398
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   399
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   400
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   401
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   402
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   403
\draw[blue] (0,0) -- (5.66,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   404
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   405
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   406
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   407
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   408
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   409
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   410
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   411
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   412
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   413
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   414
\draw[blue] (0,0) -- (5,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   415
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   416
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   417
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   418
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   419
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   420
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   421
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   422
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   423
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   424
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   425
\draw[blue] (2.83,3) circle (3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   426
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   427
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   428
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   429
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   430
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   431
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   432
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   433
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   434
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   435
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   436
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   437
\draw[blue] (0,-1) -- (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   438
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   439
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   440
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   441
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   442
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   443
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   444
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   445
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   446
\path[clip] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   447
\draw[blue,line width=2pt] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   448
\draw[blue] (1,-1) .. controls  (2,-1) and (3,1) .. (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   449
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   450
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   451
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   452
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   453
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   454
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   455
\caption{Five examples of unions of pinched products}\label{pinched_prod_unions}
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   456
\end{figure}
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   457
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   458
The product axiom will give a map $\pi^*:\cC(X)\to \cC(E)$ for each pinched product
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   459
$\pi:E\to X$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   460
Morphisms in the image of $\pi^*$ will be called product morphisms.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   461
Before stating the axiom, we illustrate it in our two motivating examples of $n$-categories.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   462
In the case where $\cC(X) = \{f: X\to T\}$, we define $\pi^*(f) = f\circ\pi$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   463
In the case where $\cC(X)$ is the set of all labeled embedded cell complexes $K$ in $X$, 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   464
define $\pi^*(K) = \pi\inv(K)$, with each codimension $i$ cell $\pi\inv(c)$ labeled by the
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   465
same (traditional) $i$-morphism as the corresponding codimension $i$ cell $c$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   466
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   467
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   468
\addtocounter{axiom}{-1}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   469
\begin{axiom}[Product (identity) morphisms]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   470
For each pinched product $\pi:E\to X$, with $X$ a $k$-ball and $E$ a $k{+}m$-ball ($m\ge 1$),
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   471
there is a map $\pi^*:\cC(X)\to \cC(E)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   472
These maps must satisfy the following conditions.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   473
\begin{enumerate}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   474
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   475
If $\pi:E\to X$ and $\pi':E'\to X'$ are pinched products, and
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   476
if $f:X\to X'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   477
\[ \xymatrix{
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   478
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   479
	X \ar[r]^{f} & X'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   480
} \]
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   481
commutes, then we have 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   482
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   483
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   484
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   485
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   486
Product morphisms are compatible with gluing (composition).
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   487
Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   488
be pinched products with $E = E_1\cup E_2$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   489
Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\sub X$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   490
Then 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   491
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   492
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   493
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   494
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   495
Product morphisms are associative.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   496
If $\pi:E\to X$ and $\rho:D\to E$ are pinched products then
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   497
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   498
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   499
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   500
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   501
Product morphisms are compatible with restriction.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   502
If we have a commutative diagram
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   503
\[ \xymatrix{
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   504
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   505
	Y \ar@{^(->}[r] & X
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   506
} \]
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   507
such that $\rho$ and $\pi$ are pinched products, then
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   508
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   509
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   510
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   511
\end{enumerate}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   512
\end{axiom}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   513
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   514
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   515
\medskip
128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   516
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   517
All of the axioms listed above hold for both ordinary $n$-categories and $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   518
The last axiom (below), concerning actions of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   519
homeomorphisms in the top dimension $n$, distinguishes the two cases.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   520
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   521
We start with the plain $n$-category case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   522
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   523
\begin{axiom}[\textup{\textbf{[preliminary]}} Isotopy invariance in dimension $n$]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   524
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   525
to the identity on $\bd X$ and is isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   526
Then $f$ acts trivially on $\cC(X)$; $f(a) = a$ for all $a\in \cC(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   527
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   528
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   529
This axiom needs to be strengthened to force product morphisms to act as the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   530
Let $X$ be an $n$-ball and $Y\sub\bd X$ be an $n{-}1$-ball.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   531
Let $J$ be a 1-ball (interval).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   532
We have a collaring homeomorphism $s_{Y,J}: X\cup_Y (Y\times J) \to X$.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
   533
(Here we use the ``pinched" version of $Y\times J$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   534
\nn{do we need notation for this?})
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   535
We define a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   536
\begin{eqnarray*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   537
	\psi_{Y,J}: \cC(X) &\to& \cC(X) \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   538
	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   539
\end{eqnarray*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   540
(See Figure \ref{glue-collar}.)
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   541
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   542
\begin{equation*}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   543
\begin{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   544
\def\rad{1}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   545
\def\srad{0.75}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   546
\def\gap{4.5}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   547
\foreach \i in {0, 1, 2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   548
	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   549
	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   550
	\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   551
		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   552
	}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   553
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   554
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   555
\begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   556
	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   557
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   558
\node[right=1mm] at (0.east) {$a$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   559
\draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   560
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   561
\draw (1-small)  circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   562
\foreach \theta in {90, 72, ..., -90} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   563
	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   564
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   565
\filldraw[fill=white] (1) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   566
\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   567
	\fill (intersection \n of 1-small and 1) circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   568
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   569
\node[below] at (1-small.south) {$a \times J$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   570
\draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   571
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   572
\begin{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   573
\path[clip] (2) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   574
\draw[clip] (2.east) circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   575
\foreach \y in {1, 0.86, ..., -1} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   576
	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   577
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   578
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   579
\end{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   580
\end{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   581
\begin{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   582
\xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   583
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   584
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   585
\caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   586
We call a map of this form a {\it collar map}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   587
It can be thought of as the action of the inverse of
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   588
a map which projects a collar neighborhood of $Y$ onto $Y$,
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   589
or as the limit of homeomorphisms $X\to X$ which expand a very thin collar of $Y$
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   590
to a larger collar.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   591
We call the equivalence relation generated by collar maps and homeomorphisms
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   592
isotopic (rel boundary) to the identity {\it extended isotopy}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   593
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   594
The revised axiom is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   595
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   596
\addtocounter{axiom}{-1}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
   597
\begin{axiom}[\textup{\textbf{[plain  version]}} Extended isotopy invariance in dimension $n$.]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   598
\label{axiom:extended-isotopies}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   599
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   600
to the identity on $\bd X$ and isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   601
Then $f$ acts trivially on $\cC(X)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   602
In addition, collar maps act trivially on $\cC(X)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   603
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   604
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   605
\smallskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   606
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   607
For $A_\infty$ $n$-categories, we replace
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   608
isotopy invariance with the requirement that families of homeomorphisms act.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   609
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   610
Let $\Homeo_\bd(X)$ denote homeomorphisms of $X$ which fix $\bd X$ and
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   611
$C_*(\Homeo_\bd(X))$ denote the singular chains on this space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   612
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   613
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   614
\addtocounter{axiom}{-1}
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   615
\begin{axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$.]
335
9bf409eb5040 mostly finished inserting \cl
Scott Morrison <scott@tqft.net>
parents: 334
diff changeset
   616
For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   617
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   618
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   619
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   620
These action maps are required to be associative up to homotopy
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   621
\nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
   622
a diagram like the one in Theorem \ref{thm:CH} commutes.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   623
\nn{repeat diagram here?}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   624
\nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   625
\end{axiom}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   626
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   627
We should strengthen the above axiom to apply to families of collar maps.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   628
To do this we need to explain how collar maps form a topological space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   629
Roughly, the set of collared $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   630
and we can replace the class of all intervals $J$ with intervals contained in $\r$.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   631
Having chains on the space of collar maps act gives rise to coherence maps involving
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   632
weak identities.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   633
We will not pursue this in detail here.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   634
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   635
Note that if we take homology of chain complexes, we turn an $A_\infty$ $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   636
into a plain $n$-category (enriched over graded groups).
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   637
In a different direction, if we enrich over topological spaces instead of chain complexes,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   638
we get a space version of an $A_\infty$ $n$-category, with $\Homeo_\bd(X)$ acting 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   639
instead of  $C_*(\Homeo_\bd(X))$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   640
Taking singular chains converts such a space type $A_\infty$ $n$-category into a chain complex
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   641
type $A_\infty$ $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   642
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   643
\medskip
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   644
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   645
The alert reader will have already noticed that our definition of a (plain) $n$-category
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   646
is extremely similar to our definition of a system of fields.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   647
There are two differences.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   648
First, for the $n$-category definition we restrict our attention to balls
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   649
(and their boundaries), while for fields we consider all manifolds.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   650
Second,  in category definition we directly impose isotopy
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   651
invariance in dimension $n$, while in the fields definition we 
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   652
instead remember a subspace of local relations which contain differences of isotopic fields. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   653
(Recall that the compensation for this complication is that we can demand that the gluing map for fields is injective.)
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   654
Thus a system of fields and local relations $(\cF,\cU)$ determines an $n$-category $\cC_ {\cF,\cU}$ simply by restricting our attention to
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   655
balls and, at level $n$, quotienting out by the local relations:
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   656
\begin{align*}
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   657
\cC_{\cF,\cU}(B^k) & = \begin{cases}\cF(B) & \text{when $k<n$,} \\ \cF(B) / \cU(B) & \text{when $k=n$.}\end{cases}
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   658
\end{align*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   659
This $n$-category can be thought of as the local part of the fields.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   660
Conversely, given a topological $n$-category we can construct a system of fields via 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   661
a colimit construction; see \S \ref{ss:ncat_fields} below.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   662
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   663
\subsection{Examples of $n$-categories}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   664
\label{ss:ncat-examples}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   665
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   666
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   667
We now describe several classes of examples of $n$-categories satisfying our axioms.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   668
We typically specify only the morphisms; the rest of the data for the category
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   669
(restriction maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   670
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   671
\begin{example}[Maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   672
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   673
\label{ex:maps-to-a-space}%
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   674
Let $T$ be a topological space.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   675
We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   676
For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   677
all continuous maps from $X$ to $T$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   678
For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   679
homotopies fixed on $\bd X$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   680
(Note that homotopy invariance implies isotopy invariance.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   681
For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   682
be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   683
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   684
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   685
\noop{
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   686
Recall we described a system of fields and local relations based on maps to $T$ in Example \ref{ex:maps-to-a-space(fields)} above.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   687
Constructing a system of fields from $\pi_{\leq n}(T)$ recovers that example.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   688
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   689
an n-cat}
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   690
}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   691
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   692
\begin{example}[Maps to a space, with a fiber] \label{ex:maps-with-fiber}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   693
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   694
\label{ex:maps-to-a-space-with-a-fiber}%
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   695
We can modify the example above, by fixing a
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   696
closed $m$-manifold $F$, and defining $\pi^{\times F}_{\leq n}(T)(X) = \Maps(X \times F \to T)$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   697
otherwise leaving the definition in Example \ref{ex:maps-to-a-space} unchanged.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   698
Taking $F$ to be a point recovers the previous case.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   699
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   700
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   701
\begin{example}[Linearized, twisted, maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   702
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   703
\label{ex:linearized-maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   704
We can linearize Examples \ref{ex:maps-to-a-space} and \ref{ex:maps-to-a-space-with-a-fiber} as follows.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   705
Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   706
(have in mind the trivial cocycle).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   707
For $X$ of dimension less than $n$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X)$ as before, ignoring $\alpha$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   708
For $X$ an $n$-ball and $c\in \Maps(\bdy X \times F \to T)$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X; c)$ to be
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   709
the $R$-module of finite linear combinations of continuous maps from $X\times F$ to $T$,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   710
modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   711
$h: X\times F\times I \to T$, then $a = \alpha(h)b$.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   712
(In order for this to be well-defined we must choose $\alpha$ to be zero on degenerate simplices.
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   713
Alternatively, we could equip the balls with fundamental classes.)
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   714
\end{example}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   715
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   716
\begin{example}[$n$-categories from TQFTs]
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   717
\rm
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   718
\label{ex:ncats-from-tqfts}%
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   719
Let $\cF$ be a TQFT in the sense of \S\ref{sec:fields}: an $n$-dimensional 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   720
system of fields (also denoted $\cF$) and local relations.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   721
Let $W$ be an $n{-}j$-manifold.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   722
Define the $j$-category $\cF(W)$ as follows.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   723
If $X$ is a $k$-ball with $k<j$, let $\cF(W)(X) \deq \cF(W\times X)$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   724
If $X$ is a $j$-ball and $c\in \cl{\cF(W)}(\bd X)$, 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   725
let $\cF(W)(X; c) \deq A_\cF(W\times X; c)$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   726
\end{example}
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   727
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   728
The next example is only intended to be illustrative, as we don't specify 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   729
which definition of a ``traditional $n$-category" we intend.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   730
Further, most of these definitions don't even have an agreed-upon notion of 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   731
``strong duality", which we assume here.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   732
\begin{example}[Traditional $n$-categories]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   733
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   734
\label{ex:traditional-n-categories}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   735
Given a ``traditional $n$-category with strong duality" $C$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   736
define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   737
to be the set of all $C$-labeled embedded cell complexes of $X$ (c.f. \S \ref{sec:fields}).
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
   738
For $X$ an $n$-ball and $c\in \cl{\cC}(\bd X)$, define $\cC(X; c)$ to be finite linear
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   739
combinations of $C$-labeled embedded cell complexes of $X$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   740
modulo the kernel of the evaluation map.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   741
Define a product morphism $a\times D$, for $D$ an $m$-ball, to be the product of the cell complex of $a$ with $D$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   742
with each cell labelled according to the corresponding cell for $a$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   743
(These two cells have the same codimension.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   744
More generally, start with an $n{+}m$-category $C$ and a closed $m$-manifold $F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   745
Define $\cC(X)$, for $\dim(X) < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   746
to be the set of all $C$-labeled embedded cell complexes of $X\times F$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   747
Define $\cC(X; c)$, for $X$ an $n$-ball,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   748
to be the dual Hilbert space $A(X\times F; c)$.
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
   749
(See \S\ref{sec:constructing-a-tqft}.)
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   750
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   751
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   752
\noop{
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   753
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   754
an n-cat}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   755
Recall we described a system of fields and local relations based on a ``traditional $n$-category" 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   756
$C$ in Example \ref{ex:traditional-n-categories(fields)} above.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   757
\nn{KW: We already refer to \S \ref{sec:fields} above}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   758
Constructing a system of fields from $\cC$ recovers that example. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   759
\todo{Except that it doesn't: pasting diagrams v.s. string diagrams.}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   760
\nn{KW: but the above example is all about string diagrams.  the only difference is at the top level,
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   761
where the quotient is built in.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   762
but (string diagrams)/(relations) is isomorphic to 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   763
(pasting diagrams composed of smaller string diagrams)/(relations)}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   764
}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   765
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   766
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   767
\newcommand{\Bord}{\operatorname{Bord}}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   768
\begin{example}[The bordism $n$-category, plain version]
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   769
\label{ex:bord-cat}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   770
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   771
\label{ex:bordism-category}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   772
For a $k$-ball $X$, $k<n$, define $\Bord^n(X)$ to be the set of all $k$-dimensional
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   773
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   774
to $\bd X$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   775
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes (rel boundary) of such $n$-dimensional submanifolds;
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   776
we identify $W$ and $W'$ if $\bd W = \bd W'$ and there is a homeomorphism
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   777
$W \to W'$ which restricts to the identity on the boundary.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   778
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   779
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   780
%\nn{the next example might be an unnecessary distraction.  consider deleting it.}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   781
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   782
%\begin{example}[Variation on the above examples]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   783
%We could allow $F$ to have boundary and specify boundary conditions on $X\times \bd F$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   784
%for example product boundary conditions or take the union over all boundary conditions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   785
%%\nn{maybe should not emphasize this case, since it's ``better" in some sense
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   786
%%to think of these guys as affording a representation
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   787
%%of the $n{+}1$-category associated to $\bd F$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   788
%\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   789
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   790
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   791
%We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   792
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   793
\begin{example}[Chains (or space) of maps to a space]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   794
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   795
\label{ex:chains-of-maps-to-a-space}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   796
We can modify Example \ref{ex:maps-to-a-space} above to define the fundamental $A_\infty$ $n$-category $\pi^\infty_{\le n}(T)$ of a topological space $T$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   797
For a $k$-ball $X$, with $k < n$, the set $\pi^\infty_{\leq n}(T)(X)$ is just $\Maps(X \to T)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   798
Define $\pi^\infty_{\leq n}(T)(X; c)$ for an $n$-ball $X$ and $c \in \pi^\infty_{\leq n}(T)(\bdy X)$ to be the chain complex
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   799
\[
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   800
	C_*(\Maps_c(X\times F \to T)),
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   801
\]
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   802
where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   803
and $C_*$ denotes singular chains.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   804
Alternatively, if we take the $n$-morphisms to be simply $\Maps_c(X\times F \to T)$, 
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   805
we get an $A_\infty$ $n$-category enriched over spaces.
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   806
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   807
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   808
See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   809
homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   810
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   811
\begin{example}[Blob complexes of balls (with a fiber)]
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   812
\rm
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   813
\label{ex:blob-complexes-of-balls}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   814
Fix an $n{-}k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   815
We will define an $A_\infty$ $k$-category $\cC$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   816
When $X$ is a $m$-ball, with $m<k$, define $\cC(X) = \cE(X\times F)$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   817
When $X$ is an $k$-ball,
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   818
define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   819
where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   820
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   821
445
45807ce15615 starting on a_inf_blob.tex; just realized I forgot to fetch scott's recent changes
Kevin Walker <kevin@canyon23.net>
parents: 440
diff changeset
   822
This example will be used in Theorem \ref{thm:product} below, which allows us to compute the blob complex of a product.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   823
Notice that with $F$ a point, the above example is a construction turning a topological 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   824
$n$-category $\cC$ into an $A_\infty$ $n$-category which we'll denote by $\bc_*(\cC)$.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   825
We think of this as providing a ``free resolution" 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   826
of the topological $n$-category. 
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   827
\nn{say something about cofibrant replacements?}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   828
In fact, there is also a trivial, but mostly uninteresting, way to do this: 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   829
we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   830
and take $\CD{B}$ to act trivially. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   831
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   832
Be careful that the ``free resolution" of the topological $n$-category $\pi_{\leq n}(T)$ is not the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   833
It's easy to see that with $n=0$, the corresponding system of fields is just 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   834
linear combinations of connected components of $T$, and the local relations are trivial.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   835
There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   836
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   837
\begin{example}[The bordism $n$-category, $A_\infty$ version]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   838
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   839
\label{ex:bordism-category-ainf}
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   840
As in Example \ref{ex:bord-cat}, for $X$ a $k$-ball, $k<n$, we define $\Bord^{n,\infty}(X)$
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   841
to be the set of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   842
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   843
to $\bd X$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   844
For an $n$-ball $X$ with boundary condition $c$ 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   845
define $\Bord^{n,\infty}(X; c)$ to be the space of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   846
submanifolds $W$ of $X\times \Real^\infty$ such that 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   847
$W$ coincides with $c$ at $\bd X \times \Real^\infty$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   848
(The topology on this space is induced by ambient isotopy rel boundary.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   849
This is homotopy equivalent to a disjoint union of copies $\mathrm{B}\!\Homeo(W')$, where
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   850
$W'$ runs though representatives of homeomorphism types of such manifolds.)
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   851
\nn{check this}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   852
\end{example}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   853
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   854
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   855
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   856
Let $\cE\cB_n$ be the operad of smooth embeddings of $k$ (little)
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   857
copies of the standard $n$-ball $B^n$ into another (big) copy of $B^n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   858
(We require that the interiors of the little balls be disjoint, but their 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   859
boundaries are allowed to meet.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   860
Note in particular that the space for $k=1$ contains a copy of $\Diff(B^n)$, namely
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   861
the embeddings of a ``little" ball with image all of the big ball $B^n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   862
\nn{should we warn that the inclusion of this copy of $\Diff(B^n)$ is not a homotopy equivalence?})
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   863
The operad $\cE\cB_n$ is homotopy equivalent to the standard framed little $n$-ball operad:
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   864
by shrinking the little balls (precomposing them with dilations), 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   865
we see that both operads are homotopic to the space of $k$ framed points
401
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   866
in $B^n$.
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   867
It is easy to see that $n$-fold loop spaces $\Omega^n(T)$  have
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   868
an action of $\cE\cB_n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   869
\nn{add citation for this operad if we can find one}
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   870
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   871
\begin{example}[$E_n$ algebras]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   872
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   873
\label{ex:e-n-alg}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   874
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   875
Let $A$ be an $\cE\cB_n$-algebra.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   876
Note that this implies a $\Diff(B^n)$ action on $A$, 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   877
since $\cE\cB_n$ contains a copy of $\Diff(B^n)$.
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   878
We will define an $A_\infty$ $n$-category $\cC^A$.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   879
If $X$ is a ball of dimension $k<n$, define $\cC^A(X)$ to be a point.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   880
In other words, the $k$-morphisms are trivial for $k<n$.
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   881
If $X$ is an $n$-ball, we define $\cC^A(X)$ via a colimit construction.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   882
(Plain colimit, not homotopy colimit.)
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   883
Let $J$ be the category whose objects are embeddings of a disjoint union of copies of 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   884
the standard ball $B^n$ into $X$, and who morphisms are given by engulfing some of the 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   885
embedded balls into a single larger embedded ball.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   886
To each object of $J$ we associate $A^{\times m}$ (where $m$ is the number of balls), and
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   887
to each morphism of $J$ we associate a morphism coming from the $\cE\cB_n$ action on $A$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   888
Alternatively and more simply, we could define $\cC^A(X)$ to be 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   889
$\Diff(B^n\to X)\times A$ modulo the diagonal action of $\Diff(B^n)$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   890
The remaining data for the $A_\infty$ $n$-category 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   891
--- composition and $\Diff(X\to X')$ action ---
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   892
also comes from the $\cE\cB_n$ action on $A$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   893
\nn{should we spell this out?}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   894
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
   895
\nn{Should remark that the associated hocolim for manifolds
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
   896
is agrees with Lurie's topological chiral homology construction; maybe wait
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
   897
until next subsection to say that?}
356
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   898
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   899
Conversely, one can show that a topological $A_\infty$ $n$-category $\cC$, where the $k$-morphisms
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   900
$\cC(X)$ are trivial (single point) for $k<n$, gives rise to 
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   901
an $\cE\cB_n$-algebra.
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   902
\nn{The paper is already long; is it worth giving details here?}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   903
\end{example}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   904
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   905
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   906
\subsection{From balls to manifolds}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   907
\label{ss:ncat_fields} \label{ss:ncat-coend}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   908
In this section we describe how to extend an $n$-category $\cC$ as described above 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   909
(of either the plain or $A_\infty$ variety) to an invariant of manifolds, which we denote by $\cl{\cC}$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   910
This extension is a certain colimit, and we've chosen the notation to remind you of this.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   911
Thus we show that functors $\cC_k$ satisfying the axioms above have a canonical extension 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   912
from $k$-balls to arbitrary $k$-manifolds.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   913
Recall that we've already anticipated this construction in the previous section, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   914
inductively defining $\cl{\cC}$ on $k$-spheres in terms of $\cC$ on $k$-balls, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   915
so that we can state the boundary axiom for $\cC$ on $k+1$-balls.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   916
In the case of plain $n$-categories, this construction factors into a construction of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   917
system of fields and local relations, followed by the usual TQFT definition of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   918
vector space invariant of manifolds given as Definition \ref{defn:TQFT-invariant}.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   919
For an $A_\infty$ $n$-category, $\cl{\cC}$ is defined using a homotopy colimit instead.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   920
Recall that we can take a plain $n$-category $\cC$ and pass to the ``free resolution", 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   921
an $A_\infty$ $n$-category $\bc_*(\cC)$, by computing the blob complex of balls (recall Example \ref{ex:blob-complexes-of-balls} above).
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   922
We will show in Corollary \ref{cor:new-old} below that the homotopy colimit invariant 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   923
for a manifold $M$ associated to this $A_\infty$ $n$-category is actually the same as the original blob complex  for $M$ with coefficients in $\cC$.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   924
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   925
We will first define the ``cell-decomposition" poset $\cell(W)$ for any $k$-manifold $W$, for $1 \leq k \leq n$. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   926
An $n$-category $\cC$ provides a functor from this poset to the category of sets, 
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   927
and we  will define $\cl{\cC}(W)$ as a suitable colimit 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   928
(or homotopy colimit in the $A_\infty$ case) of this functor. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   929
We'll later give a more explicit description of this colimit.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   930
In the case that the $n$-category $\cC$ is enriched (e.g. associates vector spaces or chain complexes to $n$-balls with boundary data), 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   931
then the resulting colimit is also enriched, that is, the set associated to $W$ splits into subsets according to boundary data, and each of these subsets has the appropriate structure (e.g. a vector space or chain complex).
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   932
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   933
Define a {\it permissible decomposition} of $W$ to be a cell decomposition
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   934
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   935
	W = \bigcup_a X_a ,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   936
\]
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   937
where each closed top-dimensional cell $X_a$ is an embedded $k$-ball.
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   938
\nn{need to define this more carefully}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   939
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   940
of $y$, or write $x \le y$, if each $k$-ball of $y$ is a union of $k$-balls of $x$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   941
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   942
\begin{defn}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   943
The category (poset) $\cell(W)$ has objects the permissible decompositions of $W$, 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   944
and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   945
See Figure \ref{partofJfig} for an example.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   946
\end{defn}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   947
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   948
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   949
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   950
\mathfig{.63}{ncat/zz2}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   951
\end{equation*}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   952
\caption{A small part of $\cell(W)$}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   953
\label{partofJfig}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   954
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   955
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   956
An $n$-category $\cC$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   957
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   958
(possibly with additional structure if $k=n$).
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   959
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   960
and, as described above, we have a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   961
are splittable along this decomposition.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   962
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   963
\begin{defn}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   964
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   965
For a decomposition $x = \bigcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   966
\begin{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   967
\label{eq:psi-C}
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   968
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   969
\end{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   970
where the restrictions to the various pieces of shared boundaries amongst the cells
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   971
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   972
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   973
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   974
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   975
If $k=n$ in the above definition and we are enriching in some auxiliary category, 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   976
we need to say a bit more.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   977
We can rewrite Equation \ref{eq:psi-C} as
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   978
\begin{equation} \label{eq:psi-CC}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   979
	\psi_{\cC;W}(x) \deq \coprod_\beta \prod_a \cC(X_a; \beta) ,
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   980
\end{equation}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   981
where $\beta$ runs through labelings of the $k{-}1$-skeleton of the decomposition
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   982
(which are compatible when restricted to the $k{-}2$-skeleton), and $\cC(X_a; \beta)$
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   983
means the subset of $\cC(X_a)$ whose restriction to $\bd X_a$ agress with $\beta$.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   984
If we are enriching over $\cS$ and $k=n$, then $\cC(X_a; \beta)$ is an object in 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   985
$\cS$ and the coproduct and product in Equation \ref{eq:psi-CC} should be replaced by the approriate
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   986
operations in $\cS$ (e.g. direct sum and tensor product if $\cS$ is Vect).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   987
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   988
Finally, we construct $\cl{\cC}(W)$ as the appropriate colimit of $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   989
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   990
\begin{defn}[System of fields functor]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   991
\label{def:colim-fields}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   992
If $\cC$ is an $n$-category enriched in sets or vector spaces, $\cl{\cC}(W)$ is the usual colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   993
That is, for each decomposition $x$ there is a map
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   994
$\psi_{\cC;W}(x)\to \cl{\cC}(W)$, these maps are compatible with the refinement maps
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   995
above, and $\cl{\cC}(W)$ is universal with respect to these properties.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   996
\end{defn}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
   997
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   998
\begin{defn}[System of fields functor, $A_\infty$ case]
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   999
When $\cC$ is an $A_\infty$ $n$-category, $\cl{\cC}(W)$ for $W$ a $k$-manifold with $k < n$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1000
is defined as above, as the colimit of $\psi_{\cC;W}$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1001
When $W$ is an $n$-manifold, the chain complex $\cl{\cC}(W)$ is the homotopy colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1002
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1003
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1004
We can specify boundary data $c \in \cl{\cC}(\bdy W)$, and define functors $\psi_{\cC;W,c}$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1005
with values the subsets of those of $\psi_{\cC;W}$ which agree with $c$ on the boundary of $W$.
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
  1006
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1007
We now give more concrete descriptions of the above colimits.
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1008
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1009
In the non-enriched case (e.g.\ $k<n$), where each $\cC(X_a; \beta)$ is just a set,
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1010
the colimit is
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1011
\[
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1012
	\cl{\cC}(W,c) = \left( \coprod_x \coprod_\beta \prod_a \cC(X_a; \beta) \right) / \sim ,
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1013
\]
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1014
where $x$ runs through decomposition of $W$, and $\sim$ is the obvious equivalence relation 
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1015
induced by refinement and gluing.
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1016
If $\cC$ is enriched over vector spaces and $W$ is an $n$-manifold, 
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1017
we can take
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1018
\begin{equation*}
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1019
	\cl{\cC}(W,c) = \left( \bigoplus_x \bigoplus_\beta \bigotimes_a \cC(X_a; \beta) \right) / K
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1020
\end{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1021
where $K$ is the vector space spanned by elements $a - g(a)$, with
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1022
$a\in \psi_{\cC;W,c}(x)$ for some decomposition $x$, and $g: \psi_{\cC;W,c}(x)
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1023
\to \psi_{\cC;W,c}(y)$ is value of $\psi_{\cC;W,c}$ on some antirefinement $x \leq y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1024
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1025
In the $A_\infty$ case, enriched over chain complexes, the concrete description of the homotopy colimit
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
  1026
is more involved.
447
ba4f86b15ff0 more a-inf section
Kevin Walker <kevin@canyon23.net>
parents: 446
diff changeset
  1027
\nn{should change to less strange terminology: ``filtration" to ``simplex"
ba4f86b15ff0 more a-inf section
Kevin Walker <kevin@canyon23.net>
parents: 446
diff changeset
  1028
(search for all occurrences of ``filtration")}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1029
Define an $m$-sequence in $W$ to be a sequence $x_0 \le x_1 \le \dots \le x_m$ of permissible decompositions of $W$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1030
Such sequences (for all $m$) form a simplicial set in $\cell(W)$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1031
Define $\cl{\cC}(W)$ as a vector space via
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1032
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1033
	\cl{\cC}(W) = \bigoplus_{(x_i)} \psi_{\cC;W}(x_0)[m] ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1034
\]
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1035
where the sum is over all $m$-sequences $(x_i)$ and all $m$, and each summand is degree shifted by $m$. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1036
(Our homological conventions are non-standard: if a complex $U$ is concentrated in degree $0$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1037
the complex $U[m]$ is concentrated in degree $m$.)
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1038
\nn{if there is a std convention, should we use it?  or are we deliberately bucking tradition?}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1039
We endow $\cl{\cC}(W)$ with a differential which is the sum of the differential of the $\psi_{\cC;W}(x_0)$
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1040
summands plus another term using the differential of the simplicial set of $m$-sequences.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1041
More specifically, if $(a, \bar{x})$ denotes an element in the $\bar{x}$
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1042
summand of $\cl{\cC}(W)$ (with $\bar{x} = (x_0,\dots,x_k)$), define
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1043
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1044
	\bd (a, \bar{x}) = (\bd a, \bar{x}) + (-1)^{\deg{a}} (g(a), d_0(\bar{x})) + (-1)^{\deg{a}} \sum_{j=1}^k (-1)^{j} (a, d_j(\bar{x})) ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1045
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1046
where $d_j(\bar{x}) = (x_0,\dots,x_{j-1},x_{j+1},\dots,x_k)$ and $g: \psi_\cC(x_0)\to \psi_\cC(x_1)$
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1047
is the usual gluing map coming from the antirefinement $x_0 \le x_1$.
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1048
%\nn{need to say this better}
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1049
%\nn{maybe mention that there is a version that emphasizes minimal gluings (antirefinements) which
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1050
%combine only two balls at a time; for $n=1$ this version will lead to usual definition
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1051
%of $A_\infty$ category}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1052
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1053
We will call $m$ the filtration degree of the complex.
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1054
\nn{is there a more standard term for this?}
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1055
We can think of this construction as starting with a disjoint copy of a complex for each
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1056
permissible decomposition (filtration degree 0).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1057
Then we glue these together with mapping cylinders coming from gluing maps
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1058
(filtration degree 1).
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1059
Then we kill the extra homology we just introduced with mapping 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1060
cylinders between the mapping cylinders (filtration degree 2), and so on.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1061
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1062
$\cl{\cC}(W)$ is functorial with respect to homeomorphisms of $k$-manifolds. Restricting the $k$-spheres, we have now proved Lemma \ref{lem:spheres}.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1063
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
  1064
It is easy to see that
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1065
there are well-defined maps $\cl{\cC}(W)\to\cl{\cC}(\bd W)$, and that these maps
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1066
comprise a natural transformation of functors.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1067
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1068
\begin{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1069
\label{lem:colim-injective}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1070
Let $W$ be a manifold of dimension less than $n$.  Then for each
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1071
decomposition $x$ of $W$ the natural map $\psi_{\cC;W}(x)\to \cl{\cC}(W)$ is injective.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1072
\end{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1073
\begin{proof}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1074
\nn{...}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1075
\end{proof}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1076
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1077
\nn{need to finish explaining why we have a system of fields;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1078
define $k$-cat $\cC(\cdot\times W)$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1079
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1080
\subsection{Modules}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  1081
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1082
Next we define plain and $A_\infty$ $n$-category modules.
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1083
The definition will be very similar to that of $n$-categories,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1084
but with $k$-balls replaced by {\it marked $k$-balls,} defined below.
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1085
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1086
Our motivating example comes from an $(m{-}n{+}1)$-dimensional manifold $W$ with boundary
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1087
in the context of an $m{+}1$-dimensional TQFT.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1088
Such a $W$ gives rise to a module for the $n$-category associated to $\bd W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1089
This will be explained in more detail as we present the axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1090
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1091
Throughout, we fix an $n$-category $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1092
For all but one axiom, it doesn't matter whether $\cC$ is a topological $n$-category or an $A_\infty$ $n$-category.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1093
We state the final axiom, on actions of homeomorphisms, differently in the two cases.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1094
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1095
Define a {\it marked $k$-ball} to be a pair $(B, N)$ homeomorphic to the pair
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1096
$$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1097
We call $B$ the ball and $N$ the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1098
A homeomorphism between marked $k$-balls is a homeomorphism of balls which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1099
restricts to a homeomorphism of markings.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1100
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1101
\begin{module-axiom}[Module morphisms]
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1102
{For each $0 \le k \le n$, we have a functor $\cM_k$ from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1103
the category of marked $k$-balls and 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1104
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1105
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1106
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1107
(As with $n$-categories, we will usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1108
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1109
For example, let $\cD$ be the TQFT which assigns to a $k$-manifold $N$ the set 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1110
of maps from $N$ to $T$ (for $k\le m$), modulo homotopy (and possibly linearized) if $k=m$.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1111
Let $W$ be an $(m{-}n{+}1)$-dimensional manifold with boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1112
Let $\cC$ be the $n$-category with $\cC(X) \deq \cD(X\times \bd W)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1113
Let $\cM(B, N) \deq \cD((B\times \bd W)\cup (N\times W))$
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1114
(see Example \ref{ex:maps-with-fiber}).
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1115
(The union is along $N\times \bd W$.)
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1116
%(If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1117
%the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1118
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1119
\begin{figure}[!ht]
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1120
$$\mathfig{.8}{ncat/boundary-collar}$$
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1121
\caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1122
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1123
Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1124
Call such a thing a {marked $k{-}1$-hemisphere}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1125
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1126
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1127
\label{lem:hemispheres}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1128
{For each $0 \le k \le n-1$, we have a functor $\cl\cM_k$ from 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1129
the category of marked $k$-hemispheres and 
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1130
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1131
\end{lem}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1132
The proof is exactly analogous to that of Lemma \ref{lem:spheres}, and we omit the details.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1133
We use the same type of colimit construction.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1134
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1135
In our example, $\cl\cM(H) = \cD(H\times\bd W \cup \bd H\times W)$.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1136
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1137
\begin{module-axiom}[Module boundaries (maps)]
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1138
{For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cl\cM(\bd M)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1139
These maps, for various $M$, comprise a natural transformation of functors.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1140
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1141
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1142
Given $c\in\cl\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1144
If the $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1145
then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1146
and $c\in \cC(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1147
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1148
\begin{lem}[Boundary from domain and range]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1149
{Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k{-}1$-hemisphere ($1\le k\le n$),
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1150
$M_i$ is a marked $k{-}1$-ball, and $E = M_1\cap M_2$ is a marked $k{-}2$-hemisphere.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1151
Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1152
two maps $\bd: \cM(M_i)\to \cl\cM(E)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1153
Then we have an injective map
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1154
\[
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1155
	\gl_E : \cM(M_1) \times_{\cl\cM(E)} \cM(M_2) \hookrightarrow \cl\cM(H)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1156
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1157
which is natural with respect to the actions of homeomorphisms.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1158
\end{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1159
Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1160
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1161
Let $\cl\cM(H)_E$ denote the image of $\gl_E$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1162
We will refer to elements of $\cl\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". 
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1163
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1164
\begin{lem}[Module to category restrictions]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1165
{For each marked $k$-hemisphere $H$ there is a restriction map
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1166
$\cl\cM(H)\to \cC(H)$.  
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1167
($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1168
These maps comprise a natural transformation of functors.}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1169
\end{lem}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1170
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1171
Note that combining the various boundary and restriction maps above
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1172
(for both modules and $n$-categories)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1173
we have for each marked $k$-ball $(B, N)$ and each $k{-}1$-ball $Y\sub \bd B \setmin N$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1174
a natural map from a subset of $\cM(B, N)$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1175
The subset is the subset of morphisms which are appropriately splittable (transverse to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1176
cutting submanifolds).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1177
This fact will be used below.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1178
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1179
In our example, the various restriction and gluing maps above come from
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1180
restricting and gluing maps into $T$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1181
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1182
We require two sorts of composition (gluing) for modules, corresponding to two ways
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1183
of splitting a marked $k$-ball into two (marked or plain) $k$-balls.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1184
(See Figure \ref{zzz3}.)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1185
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1186
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1187
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1188
\mathfig{.4}{ncat/zz3}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1189
\end{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1190
\caption{Module composition (top); $n$-category action (bottom).}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1191
\label{zzz3}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1192
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1194
First, we can compose two module morphisms to get another module morphism.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1195
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1196
\begin{module-axiom}[Module composition]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1197
{Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1198
and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1199
Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1200
Note that each of $M$, $M_1$ and $M_2$ has its boundary split into two marked $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1201
We have restriction (domain or range) maps $\cM(M_i)_E \to \cM(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1202
Let $\cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1203
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1204
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1205
	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1206
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1207
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1208
to the intersection of the boundaries of $M$ and $M_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1209
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1210
(For $k=n$, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1211
\end{module-axiom}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1212
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1213
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1214
Second, we can compose an $n$-category morphism with a module morphism to get another
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1215
module morphism.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1216
We'll call this the action map to distinguish it from the other kind of composition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1217
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1218
\begin{module-axiom}[$n$-category action]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1219
{Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1220
$X$ is a plain $k$-ball,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1221
and $Y = X\cap M'$ is a $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1222
Let $E = \bd Y$, which is a $k{-}2$-sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1223
We have restriction maps $\cM(M')_E \to \cC(Y)$ and $\cC(X)_E\to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1224
Let $\cC(X)_E \times_{\cC(Y)} \cM(M')_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1225
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1226
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1227
	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1228
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1229
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1230
to the intersection of the boundaries of $X$ and $M'$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1231
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1232
(For $k=n$, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1233
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1234
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1235
\begin{module-axiom}[Strict associativity]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1236
The composition and action maps above are strictly associative.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1237
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1238
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1239
\nn{should say that this is multifold, not just 3-fold}
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1240
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1241
Note that the above associativity axiom applies to mixtures of module composition,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1242
action maps and $n$-category composition.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1243
See Figure \ref{zzz1b}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1244
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1245
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1246
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1247
\mathfig{0.49}{ncat/zz0} \mathfig{0.49}{ncat/zz1}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1248
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1249
\caption{Two examples of mixed associativity}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1250
\label{zzz1b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1251
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1252
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1253
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1254
The above three axioms are equivalent to the following axiom,
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1255
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1256
\nn{need figure for this}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1257
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1258
\xxpar{Module multi-composition:}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1259
{Given any decomposition 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1260
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1261
	M =  X_1 \cup\cdots\cup X_p \cup M_1\cup\cdots\cup M_q
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1262
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1263
of a marked $k$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1264
into small (marked and plain) $k$-balls $M_i$ and $X_j$, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1265
map from an appropriate subset (like a fibered product) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1266
of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1267
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1268
	\cC(X_1)\times\cdots\times\cC(X_p) \times \cM(M_1)\times\cdots\times\cM(M_q) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1269
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1270
to $\cM(M)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1271
and these various multifold composition maps satisfy an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1272
operad-type strict associativity condition.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1273
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1274
The above operad-like structure is analogous to the swiss cheese operad
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1275
\cite{MR1718089}.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1276
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1277
\medskip
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1278
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1279
We can define marked pinched products $\pi:E\to M$ of marked balls analogously to the 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1280
plain ball case.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1281
Note that a marked pinched product can be decomposed into either
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1282
two marked pinched products or a plain pinched product and a marked pinched product.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1283
\nn{should give figure}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1284
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1285
\begin{module-axiom}[Product (identity) morphisms]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1286
For each pinched product $\pi:E\to M$, with $M$ a marked $k$-ball and $E$ a marked
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1287
$k{+}m$-ball ($m\ge 1$),
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1288
there is a map $\pi^*:\cM(M)\to \cM(E)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1289
These maps must satisfy the following conditions.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1290
\begin{enumerate}
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1291
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1292
If $\pi:E\to M$ and $\pi':E'\to M'$ are marked pinched products, and
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1293
if $f:M\to M'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1294
\[ \xymatrix{
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1295
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1296
	M \ar[r]^{f} & M'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1297
} \]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1298
commutes, then we have 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1299
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1300
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1301
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1302
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1303
Product morphisms are compatible with module composition and module action.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1304
Let $\pi:E\to M$, $\pi_1:E_1\to M_1$, and $\pi_2:E_2\to M_2$ 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1305
be pinched products with $E = E_1\cup E_2$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1306
Let $a\in \cM(M)$, and let $a_i$ denote the restriction of $a$ to $M_i\sub M$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1307
Then 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1308
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1309
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1310
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1311
Similarly, if $\rho:D\to X$ is a pinched product of plain balls and
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1312
$E = D\cup E_1$, then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1313
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1314
	\pi^*(a) = \rho^*(a')\bullet \pi_1^*(a_1),
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1315
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1316
where $a'$ is the restriction of $a$ to $D$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1317
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1318
Product morphisms are associative.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1319
If $\pi:E\to M$ and $\rho:D\to E$ are marked pinched products then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1320
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1321
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1322
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1323
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1324
Product morphisms are compatible with restriction.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1325
If we have a commutative diagram
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1326
\[ \xymatrix{
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1327
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1328
	Y \ar@{^(->}[r] & M
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1329
} \]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1330
such that $\rho$ and $\pi$ are pinched products, then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1331
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1332
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1333
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1334
($Y$ could be either a marked or plain ball.)
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1335
\end{enumerate}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1336
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1337
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1338
As in the $n$-category definition, once we have product morphisms we can define
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1339
collar maps $\cM(M)\to \cM(M)$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1340
Note that there are two cases:
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1341
the collar could intersect the marking of the marked ball $M$, in which case
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1342
we use a product on a morphism of $\cM$; or the collar could be disjoint from the marking,
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1343
in which case we use a product on a morphism of $\cC$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1344
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1345
In our example, elements $a$ of $\cM(M)$ maps to $T$, and $\pi^*(a)$ is the pullback of
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1346
$a$ along a map associated to $\pi$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1347
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1348
\medskip
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1349
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1350
There are two alternatives for the next axiom, according whether we are defining
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1351
modules for plain $n$-categories or $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1352
In the plain case we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1353
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1354
\begin{module-axiom}[\textup{\textbf{[plain version]}} Extended isotopy invariance in dimension $n$]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1355
{Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1356
to the identity on $\bd M$ and is isotopic (rel boundary) to the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1357
Then $f$ acts trivially on $\cM(M)$.}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1358
In addition, collar maps act trivially on $\cM(M)$.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1359
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1360
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1361
We emphasize that the $\bd M$ above means boundary in the marked $k$-ball sense.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1362
In other words, if $M = (B, N)$ then we require only that isotopies are fixed 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1363
on $\bd B \setmin N$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1364
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1365
For $A_\infty$ modules we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1366
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1367
\addtocounter{module-axiom}{-1}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1368
\begin{module-axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act]
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1369
For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1370
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1371
	C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1372
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1373
Here $C_*$ means singular chains and $\Homeo_\bd(M)$ is the space of homeomorphisms of $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1374
which fix $\bd M$.
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
  1375
These action maps are required to be associative up to homotopy, as in Theorem \ref{thm:CH-associativity}, 
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1376
and also compatible with composition (gluing) in the sense that
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
  1377
a diagram like the one in Theorem \ref{thm:CH} commutes.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1378
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1379
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1380
As with the $n$-category version of the above axiom, we should also have families of collar maps act.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1381
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1382
\medskip
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1383
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1384
Note that the above axioms imply that an $n$-category module has the structure
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1385
of an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1386
More specifically, let $J$ be a marked 1-ball, and define $\cE(X)\deq \cM(X\times J)$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
  1387
where $X$ is a $k$-ball and in the product $X\times J$ we pinch 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1388
above the non-marked boundary component of $J$.
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1389
(More specifically, we collapse $X\times P$ to a single point, where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1390
$P$ is the non-marked boundary component of $J$.)
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1391
Then $\cE$ has the structure of an $n{-}1$-category.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1392
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1393
All marked $k$-balls are homeomorphic, unless $k = 1$ and our manifolds
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1394
are oriented or Spin (but not unoriented or $\text{Pin}_\pm$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1395
In this case ($k=1$ and oriented or Spin), there are two types
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1396
of marked 1-balls, call them left-marked and right-marked,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1397
and hence there are two types of modules, call them right modules and left modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1398
In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1399
there is no left/right module distinction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1400
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1401
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1402
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1403
We now give some examples of modules over topological and $A_\infty$ $n$-categories.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1404
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1405
\begin{example}[Examples from TQFTs]
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1406
\rm
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1407
Continuing Example \ref{ex:ncats-from-tqfts}, with $\cF$ a TQFT, $W$ an $n{-}j$-manifold,
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1408
and $\cF(W)$ the $j$-category associated to $W$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1409
Let $Y$ be an $(n{-}j{+}1)$-manifold with $\bd Y = W$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1410
Define a $\cF(W)$ module $\cF(Y)$ as follows.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1411
If $M = (B, N)$ is a marked $k$-ball with $k<j$ let 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1412
$\cF(Y)(M)\deq \cF((B\times W) \cup (N\times Y))$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1413
If $M = (B, N)$ is a marked $j$-ball and $c\in \cl{\cF(Y)}(\bd M)$ let
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1414
$\cF(Y)(M)\deq A_\cF((B\times W) \cup (N\times Y); c)$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1415
\end{example}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1416
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1417
\begin{example}
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1418
\rm
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1419
Suppose $S$ is a topological space, with a subspace $T$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1420
We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1421
for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1422
$(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1423
such maps modulo homotopies fixed on $\bdy B \setminus N$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1424
This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
  1425
\end{example}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1426
Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1427
\ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1428
Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1429
324
a20e2318cbb0 rewrite proof from gluing thm
Kevin Walker <kevin@canyon23.net>
parents: 319
diff changeset
  1430
\subsection{Modules as boundary labels (colimits for decorated manifolds)}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1431
\label{moddecss}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1432
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1433
Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1434
Let $W$ be a $k$-manifold ($k\le n$),
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1435
let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1436
and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1437
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1438
We will define a set $\cC(W, \cN)$ using a colimit construction similar to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1439
the one appearing in \S \ref{ss:ncat_fields} above.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1440
(If $k = n$ and our $n$-categories are enriched, then
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1441
$\cC(W, \cN)$ will have additional structure; see below.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1442
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1443
Define a permissible decomposition of $W$ to be a decomposition
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1444
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1445
	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1446
\]
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1447
where each $X_a$ is a plain $k$-ball (disjoint from $\cup Y_i$) and
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1448
each $M_{ib}$ is a marked $k$-ball intersecting $Y_i$,
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1449
with $M_{ib}\cap Y_i$ being the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1450
(See Figure \ref{mblabel}.)
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1451
\begin{figure}[t]
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1452
\begin{equation*}
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1453
\mathfig{.4}{ncat/mblabel}
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1454
\end{equation*}
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1455
\caption{A permissible decomposition of a manifold
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1456
whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1457
Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1458
\end{figure}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1459
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1460
of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1461
This defines a partial ordering $\cell(W)$, which we will think of as a category.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1462
(The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1463
morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1464
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1465
The collection of modules $\cN$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1466
a functor $\psi_\cN$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1467
(possibly with additional structure if $k=n$).
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1468
For a decomposition $x = (X_a, M_{ib})$ in $\cell(W)$, define $\psi_\cN(x)$ to be the subset
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1469
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1470
	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1471
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1472
such that the restrictions to the various pieces of shared boundaries amongst the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1473
$X_a$ and $M_{ib}$ all agree.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1474
(That is, the fibered product over the boundary restriction maps.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1475
If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1476
via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1477
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1478
We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1479
(As in \S\ref{ss:ncat-coend}, if $k=n$ we take a colimit in whatever
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1480
category we are enriching over, and if additionally we are in the $A_\infty$ case, 
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1481
then we use a homotopy colimit.)
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1482
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1483
\medskip
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1484
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1485
If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1486
$\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1487
$D\times Y_i \sub \bd(D\times W)$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1488
It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1489
has the structure of an $n{-}k$-category.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1490
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1491
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1492
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1493
We will use a simple special case of the above 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1494
construction to define tensor products 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1495
of modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1496
Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1497
(If $k=1$ and our manifolds are oriented, then one should be 
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1498
a left module and the other a right module.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1499
Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1500
Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1501
$n{-}1$-category associated as above to $J$ with its boundary labeled by $\cM_1$ and $\cM_2$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1502
This of course depends (functorially)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1503
on the choice of 1-ball $J$.
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1504
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1505
We will define a more general self tensor product (categorified coend) below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1506
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1507
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1508
\subsection{Morphisms of $A_\infty$ $1$-category modules}
288
6c1b3c954c7e more deligne.tex
Kevin Walker <kevin@canyon23.net>
parents: 286
diff changeset
  1509
\label{ss:module-morphisms}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1510
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1511
In order to state and prove our version of the higher dimensional Deligne conjecture
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
  1512
(\S\ref{sec:deligne}),
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1513
we need to define morphisms of $A_\infty$ $1$-category modules and establish
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1514
some of their elementary properties.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1515
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1516
To motivate the definitions which follow, consider algebras $A$ and $B$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1517
right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1518
\begin{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1519
	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1520
	f &\mapsto& [x \mapsto f(x\ot -)] \\
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
  1521
	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1522
\end{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1523
If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1524
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1525
	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1526
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1527
We will establish the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1528
and modules $\cM_\cC$ and $_\cC\cN$,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1529
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1530
	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1531
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1532
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1533
In the next few paragraphs we define the objects appearing in the above equation:
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1534
$\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1535
$\hom_\cC$.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1536
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1537
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1538
\def\olD{{\overline D}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1539
\def\cbar{{\bar c}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1540
In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1541
for general $n$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1542
For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1543
and their gluings (antirefinements).
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1544
(This tensor product depends functorially on the choice of $J$.)
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1545
To a subdivision $D$
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1546
\[
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1547
	J = I_1\cup \cdots\cup I_p
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1548
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1549
we associate the chain complex
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1550
\[
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1551
	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1552
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1553
To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1554
module actions of $\cC$ on $\cM$ and $\cN$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1555
The underlying graded vector space of the homotopy colimit is
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1556
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1557
	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1558
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1559
where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1560
runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1561
We will denote an element of the summand indexed by $\olD$ by
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1562
$\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1563
The boundary map is given by
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1564
\begin{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1565
	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1566
	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1567
	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1568
\end{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1569
where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1570
boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1571
and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1572
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1573
$(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1574
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1575
	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1576
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1577
where $(\psi(D_0)[l])^*$ denotes the linear dual.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1578
The boundary is given by
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1579
\begin{align}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1580
\label{eq:tensor-product-boundary}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1581
	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1582
						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1583
			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1584
\end{align}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1585
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1586
Next we define the dual module $(_\cC\cN)^*$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1587
This will depend on a choice of interval $J$, just as the tensor product did.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1588
Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1589
to chain complexes.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1590
Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1591
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1592
	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1593
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1594
where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1595
to the right-marked interval $J\setmin K$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1596
This extends to a functor from all left-marked intervals (not just those contained in $J$).
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1597
\nn{need to say more here; not obvious how homeomorphisms act}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1598
It's easy to verify the remaining module axioms.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1599
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1600
Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1601
as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1602
Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1603
Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1604
Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1605
Then for each such $\olD$ we have a degree $l$ map
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1606
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1607
	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1608
	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1609
\end{eqnarray*}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1610
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1611
We are almost ready to give the definition of morphisms between arbitrary modules
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1612
$\cX_\cC$ and $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1613
Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1614
To fix this, we define subdivisions as antirefinements of left-marked intervals.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1615
Subdivisions are just the obvious thing, but antirefinements are defined to mimic
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1616
the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1617
omitted.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1618
More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1619
gluing subintervals together and/or omitting some of the rightmost subintervals.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1620
(See Figure \ref{fig:lmar}.)
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1621
\begin{figure}[t]$$
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1622
\definecolor{arcolor}{rgb}{.75,.4,.1}
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1623
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1624
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1625
\draw (0,0) -- (2,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1626
\draw (1,0.1) -- (1,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1627
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1628
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1629
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1630
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1631
\draw (0,1) -- (2,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1632
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1633
\qquad
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1634
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1635
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1636
\draw (0,0) -- (2,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1637
\draw (1,0.1) -- (1,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1638
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1639
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1640
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1641
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1642
\draw (0,1) -- (1,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1643
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1644
\qquad
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1645
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1646
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1647
\draw (0,0) -- (3,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1648
\foreach \x in {0.5, 1.0, 1.25, 1.5, 2.0, 2.5} {
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1649
	\draw (\x,0.1) -- (\x,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1650
}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1651
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1652
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1653
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1654
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1655
\draw (0,1) -- (2,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1656
\foreach \x in {1.0, 1.5} {
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1657
	\draw (\x,1.1) -- (\x,0.9);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1658
}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1659
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1660
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1661
$$
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1662
\caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1663
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1664
Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1665
The underlying vector space is 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1666
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1667
	\prod_l \prod_{\olD} \hom[l]\left(
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1668
				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1669
							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1670
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1671
where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1672
(but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1673
$\hom[l](- \to -)$ means graded linear maps of degree $l$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1674
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1675
\nn{small issue (pun intended): 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1676
the above is a vector space only if the class of subdivisions is a set, e.g. only if
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1677
all of our left-marked intervals are contained in some universal interval (like $J$ above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1678
perhaps we should give another version of the definition in terms of natural transformations of functors.}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1679
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1680
Abusing notation slightly, we will denote elements of the above space by $g$, with
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1681
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1682
	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1683
\]
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1684
For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1685
where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1686
$\cbar''$ corresponds to the subintervals
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1687
which are dropped off the right side.
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1688
(If no such subintervals are dropped, then $\cbar''$ is empty.)
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1689
Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1690
we have
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1691
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1692
	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1693
	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl''(g((\bd_0\olD)\ot \gl'(x\ot\cbar'))\ot\cbar'') .
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1694
\end{eqnarray*}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1695
\nn{put in signs, rearrange terms to match order in previous formulas}
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1696
Here $\gl''$ denotes the module action in $\cY_\cC$
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1697
and $\gl'$ denotes the module action in $\cX_\cC$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1698
This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1699
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1700
Note that if $\bd g = 0$, then each 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1701
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1702
	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1703
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1704
constitutes a null homotopy of
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1705
$g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1706
should be interpreted as above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1707
410
Kevin Walker <kevin@canyon23.net>
parents: 402
diff changeset
  1708
Define a {\it strong morphism} 
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1709
of modules to be a collection of {\it chain} maps
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1710
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1711
	h_K : \cX(K)\to \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1712
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1713
for each left-marked interval $K$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1714
These are required to commute with gluing;
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1715
for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes:
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1716
\[ \xymatrix{
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1717
	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1718
							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1719
								\ar[d]^{\gl} \\
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1720
	\cX(K) \ar[r]^{h_{K}} & \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1721
} \]
410
Kevin Walker <kevin@canyon23.net>
parents: 402
diff changeset
  1722
Given such an $h$ we can construct a morphism $g$, with $\bd g = 0$, as follows.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1723
Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1724
If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1725
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1726
	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1727
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1728
Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1729
If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1730
If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1731
that each $h_K$ is a chain map.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1732
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1733
We can think of a general closed element $g\in \hom_\cC(\cX_\cC \to \cY_\cC)$
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1734
as a collection of chain maps which commute with the module action (gluing) up to coherent homotopy.
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1735
\nn{ideally should give explicit examples of this in low degrees, 
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1736
but skip that for now.}
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1737
\nn{should also say something about composition of morphisms; well-defined up to homotopy, or maybe
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1738
should make some arbitrary choice}
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1739
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1740
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1741
Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1742
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1743
	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1744
\]
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1745
\nn{...}
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1746
More generally, we have a chain map
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1747
\[
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1748
	\hom_\cC(\cX_\cC \to \cY_\cC) \ot \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1749
\]
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1750
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1751
\nn{not sure whether to do low degree examples or try to state the general case; ideally both,
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1752
but maybe just low degrees for now.}
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1753
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1754
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1755
\nn{...}
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1756
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1757
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1758
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1759
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1760
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1761
\nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1762
of the $\cC$ functors which commute with gluing only up to higher morphisms?
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1763
perhaps worth having both definitions available.
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1764
certainly the simple kind (strictly commute with gluing) arise in nature.}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1765
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1766
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1767
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1768
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1769
\subsection{The $n{+}1$-category of sphere modules}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 211
diff changeset
  1770
\label{ssec:spherecat}
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1771
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1772
In this subsection we define $n{+}1$-categories $\cS$ of ``sphere modules" 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1773
whose objects are $n$-categories.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1774
With future applications in mind, we treat simultaneously the big category
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1775
of all $n$-categories and all sphere modules and also subcategories thereof.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1776
When $n=1$ this is closely related to familiar $2$-categories consisting of 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1777
algebras, bimodules and intertwiners (or a subcategory of that).
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1778
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1779
While it is appropriate to call an $S^0$ module a bimodule,
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1780
this is much less true for higher dimensional spheres, 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1781
so we prefer the term ``sphere module" for the general case.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1782
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1783
%The results of this subsection are not needed for the rest of the paper,
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1784
%so we will skimp on details in a couple of places. We have included this mostly 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1785
%for the sake of comparing our notion of a topological $n$-category to other definitions.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1786
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1787
For simplicity, we will assume that $n$-categories are enriched over $\c$-vector spaces.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1788
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1789
The $0$- through $n$-dimensional parts of $\cS$ are various sorts of modules, and we describe
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1790
these first.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1791
The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1792
of  $1$-category modules associated to decorated $n$-balls.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1793
We will see below that in order for these $n{+}1$-morphisms to satisfy all of
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1794
the axioms of an $n{+}1$-category (in particular, duality requirements), we will have to assume
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1795
that our $n$-categories and modules have non-degenerate inner products.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1796
(In other words, we need to assume some extra duality on the $n$-categories and modules.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1797
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1798
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1799
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1800
Our first task is to define an $n$-category $m$-sphere module, for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1801
These will be defined in terms of certain classes of marked balls, very similarly
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1802
to the definition of $n$-category modules above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1803
(This, in turn, is very similar to our definition of $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1804
Because of this similarity, we only sketch the definitions below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1805
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1806
We start with $0$-sphere modules, which also could reasonably be called (categorified) bimodules.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1807
(For $n=1$ they are precisely bimodules in the usual, uncategorified sense.)
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1808
We prefer the more awkward term ``0-sphere module" to emphasize the analogy
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1809
with the higher sphere modules defined below.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1810
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1811
Define a $0$-marked $k$-ball, $1\le k \le n$, to be a pair  $(X, M)$ homeomorphic to the standard
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1812
$(B^k, B^{k-1})$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1813
See Figure \ref{feb21a}.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1814
Another way to say this is that $(X, M)$ is homeomorphic to $B^{k-1}\times([-1,1], \{0\})$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1815
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1816
\begin{figure}[t]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1817
$$\tikz[baseline,line width=2pt]{\draw[blue] (-2,0)--(2,0); \fill[red] (0,0) circle (0.1);} \qquad \qquad \tikz[baseline,line width=2pt]{\draw[blue][fill=blue!30!white] (0,0) circle (2 and 1); \draw[red] (0,1)--(0,-1);}$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1818
\caption{0-marked 1-ball and 0-marked 2-ball}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1819
\label{feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1820
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1821
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1822
The $0$-marked balls can be cut into smaller balls in various ways.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1823
We only consider those decompositions in which the smaller balls are either
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1824
$0$-marked (i.e. intersect the $0$-marking of the large ball in a disc) 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1825
or plain (don't intersect the $0$-marking of the large ball).
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1826
We can also take the boundary of a $0$-marked ball, which is $0$-marked sphere.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1827
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1828
Fix $n$-categories $\cA$ and $\cB$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1829
These will label the two halves of a $0$-marked $k$-ball.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1830
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1831
An $n$-category $0$-sphere module $\cM$ over the $n$-categories $\cA$ and $\cB$ is a collection of functors $\cM_k$ from the category
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1832
of $0$-marked $k$-balls, $1\le k \le n$,
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1833
(with the two halves labeled by $\cA$ and $\cB$) to the category of sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1834
If $k=n$ these sets should be enriched to the extent $\cA$ and $\cB$ are.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1835
Given a decomposition of a $0$-marked $k$-ball $X$ into smaller balls $X_i$, we have
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1836
morphism sets $\cA_k(X_i)$ (if $X_i$ lies on the $\cA$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1837
or $\cB_k(X_i)$ (if $X_i$ lies on the $\cB$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1838
or $\cM_k(X_i)$ (if $X_i$ intersects the marking and is therefore a smaller 0-marked ball).
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
  1839
Corresponding to this decomposition we have a composition (or ``gluing") map
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1840
from the product (fibered over the boundary data) of these various sets into $\cM_k(X)$.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1841
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1842
\medskip
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1843
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1844
Part of the structure of an $n$-category 0-sphere module $\cM$  is captured by saying it is
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1845
a collection $\cD^{ab}$ of $n{-}1$-categories, indexed by pairs $(a, b)$ of objects (0-morphisms)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1846
of $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1847
Let $J$ be some standard 0-marked 1-ball (i.e.\ an interval with a marked point in its interior).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1848
Given a $j$-ball $X$, $0\le j\le n-1$, we define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1849
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1850
	\cD(X) \deq \cM(X\times J) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1851
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1852
The product is pinched over the boundary of $J$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1853
The set $\cD$ breaks into ``blocks" according to the restrictions to the pinched points of $X\times J$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1854
(see Figure \ref{feb21b}).
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1855
These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$.
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1856
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1857
\begin{figure}[t]
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1858
$$
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1859
\begin{tikzpicture}[blue,line width=2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1860
\draw (0,1) -- (0,-1) node[below] {$X$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1861
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1862
\draw (2,0) -- (4,0) node[below] {$J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1863
\fill[red] (3,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1864
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1865
\draw[fill=blue!30!white] (6,0) node(a) {} arc (135:90:4) node(top) {} arc (90:45:4) node(b) {} arc (-45:-90:4) node(bottom) {} arc(-90:-135:4);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1866
\draw[red] (top.center) -- (bottom.center);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1867
\fill (a) circle (0.1) node[left] {\color{green!50!brown} $a$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1868
\fill (b) circle (0.1) node[right] {\color{green!50!brown} $b$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1869
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1870
\path (bottom) node[below]{$X \times J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1871
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1872
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1873
$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1874
\caption{The pinched product $X\times J$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1875
\label{feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1876
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1877
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1878
More generally, consider an interval with interior marked points, and with the complements
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1879
of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1880
by $\cA_i$-$\cA_{i+1}$ 0-sphere modules $\cM_i$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1881
(See Figure \ref{feb21c}.)
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
  1882
To this data we can apply the coend construction as in \S\ref{moddecss} above
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1883
to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1884
This amounts to a definition of taking tensor products of $0$-sphere modules over $n$-categories.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1885
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1886
\begin{figure}[t]
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1887
$$
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1888
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1889
\draw[blue] (0,0) -- (6,0);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1890
\foreach \x/\n in {0.5/0,1.5/1,3/2,4.5/3,5.5/4} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1891
	\path (\x,0)  node[below] {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1892
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1893
\foreach \x/\n in {1/0,2/1,4/2,5/3} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1894
	\fill[red] (\x,0) circle (0.1) node[above] {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1895
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1896
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1897
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1898
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1899
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1900
\draw[blue] (0,0) circle (2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1901
\foreach \q/\n in {-45/0,90/1,180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1902
	\path (\q:2.4)  node {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1903
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1904
\foreach \q/\n in {60/0,120/1,-120/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1905
	\fill[red] (\q:2) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1906
	\path (\q:2.4) node {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1907
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1908
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1909
$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1910
\caption{Marked and labeled 1-manifolds}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1911
\label{feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1912
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1913
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1914
We could also similarly mark and label a circle, obtaining an $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1915
associated to the marked and labeled circle.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1916
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1917
If the circle is divided into two intervals, we can think of this $n{-}1$-category
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1918
as the 2-sided tensor product of the two 0-sphere modules associated to the two intervals.
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1919
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1920
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1921
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1922
Next we define $n$-category 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1923
These are just representations of (modules for) $n{-}1$-categories associated to marked and labeled 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1924
circles (1-spheres) which we just introduced.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1925
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1926
Equivalently, we can define 1-sphere modules in terms of 1-marked $k$-balls, $2\le k\le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1927
Fix a marked (and labeled) circle $S$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1928
Let $C(S)$ denote the cone of $S$, a marked 2-ball (Figure \ref{feb21d}).
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1929
%\nn{I need to make up my mind whether marked things are always labeled too.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1930
%For the time being, let's say they are.}
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1931
A 1-marked $k$-ball is anything homeomorphic to $B^j \times C(S)$, $0\le j\le n-2$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1932
where $B^j$ is the standard $j$-ball.
399
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1933
A 1-marked $k$-ball can be decomposed in various ways into smaller balls, which are either 
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1934
(a) smaller 1-marked $k$-balls, (b) 0-marked $k$-balls, or (c) plain $k$-balls.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1935
(See Figure \nn{need figure}.)
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1936
We now proceed as in the above module definitions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1937
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1938
\begin{figure}[!ht]
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1939
$$
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1940
\begin{tikzpicture}[baseline,line width = 2pt]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1941
\draw[blue][fill=blue!15!white] (0,0) circle (2);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1942
\fill[red] (0,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1943
\foreach \qm/\qa/\n in {70/-30/0, 120/95/1, -120/180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1944
	\draw[red] (0,0) -- (\qm:2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1945
	\path (\qa:1) node {\color{green!50!brown} $\cA_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1946
	\path (\qm+20:2.5) node(M\n) {\color{green!50!brown} $\cM_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1947
	\draw[line width=1pt, green!50!brown, ->] (M\n.\qm+135) to[out=\qm+135,in=\qm+90] (\qm+5:1.3);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1948
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1949
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1950
$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1951
\caption{Cone on a marked circle}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1952
\label{feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1953
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1954
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1955
A $n$-category 1-sphere module is, among other things, an $n{-}2$-category $\cD$ with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1956
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1957
	\cD(X) \deq \cM(X\times C(S)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1958
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1959
The product is pinched over the boundary of $C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1960
$\cD$ breaks into ``blocks" according to the restriction to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1961
image of $\bd C(S) = S$ in $X\times C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1962
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1963
More generally, consider a 2-manifold $Y$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1964
(e.g.\ 2-ball or 2-sphere) marked by an embedded 1-complex $K$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1965
The components of $Y\setminus K$ are labeled by $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1966
the edges of $K$ are labeled by 0-sphere modules, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1967
and the 0-cells of $K$ are labeled by 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1968
We can now apply the coend construction and obtain an $n{-}2$-category.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1969
If $Y$ has boundary then this $n{-}2$-category is a module for the $n{-}1$-category
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1970
associated to the (marked, labeled) boundary of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1971
In particular, if $\bd Y$ is a 1-sphere then we get a 1-sphere module as defined above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1972
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1973
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1974
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1975
It should now be clear how to define $n$-category $m$-sphere modules for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1976
For example, there is an $n{-}2$-category associated to a marked, labeled 2-sphere,
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1977
and a 2-sphere module is a representation of such an $n{-}2$-category.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1978
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1979
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1980
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1981
We can now define the $n$-or-less-dimensional part of our $n{+}1$-category $\cS$.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1982
Choose some collection of $n$-categories, then choose some collections of 0-sphere modules between
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1983
these $n$-categories, then choose some collection of 1-sphere modules for the various
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1984
possible marked 1-spheres labeled by the $n$-categories and 0-sphere modules, and so on.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1985
Let $L_i$ denote the collection of $i{-}1$-sphere modules we have chosen.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1986
(For convenience, we declare a $(-1)$-sphere module to be an $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1987
There is a wide range of possibilities.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1988
The set $L_0$ could contain infinitely many $n$-categories or just one.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1989
For each pair of $n$-categories in $L_0$, $L_1$ could contain no 0-sphere modules at all or 
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1990
it could contain several.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1991
The only requirement is that each $k$-sphere module be a module for a $k$-sphere $n{-}k$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1992
constructed out of labels taken from $L_j$ for $j<k$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1993
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1994
We now define $\cS(X)$, for $X$ a ball of dimension at most $n$, to be the set of all 
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1995
cell-complexes $K$ embedded in $X$, with the codimension-$j$ parts of $(X, K)$ labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1996
by elements of $L_j$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1997
As described above, we can think of each decorated $k$-ball as defining a $k{-}1$-sphere module
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1998
for the $n{-}k{+}1$-category associated to its decorated boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1999
Thus the $k$-morphisms of $\cS$ (for $k\le n$) can be thought 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2000
of as $n$-category $k{-}1$-sphere modules 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2001
(generalizations of bimodules).
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2002
On the other hand, we can equally well think of the $k$-morphisms as decorations on $k$-balls, 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2003
and from this point of view it is clear that they satisfy all of the axioms of an
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2004
$n{+}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2005
(All of the axioms for the less-than-$n{+}1$-dimensional part of an $n{+}1$-category, that is.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2006
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2007
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2008
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2009
Next we define the $n{+}1$-morphisms of $\cS$.
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2010
The construction of the 0- through $n$-morphisms was easy and tautological, but the 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2011
$n{+}1$-morphisms will require some effort and combinatorial topology, as well as additional
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2012
duality assumptions on the lower morphisms. These are required because we define the spaces of $n{+}1$-morphisms by making arbitrary choices of incoming and outgoing boundaries for each $n$-ball. The additional duality assumptions are needed to prove independence of our definition form these choices.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2013
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2014
Let $X$ be an $n{+}1$-ball, and let $c$ be a decoration of its boundary
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2015
by a cell complex labeled by 0- through $n$-morphisms, as above.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2016
Choose an $n{-}1$-sphere $E\sub \bd X$ which divides
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2017
$\bd X$ into ``incoming" and ``outgoing" boundary $\bd_-X$ and $\bd_+X$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2018
Let $E_c$ denote $E$ decorated by the restriction of $c$ to $E$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2019
Recall from above the associated 1-category $\cS(E_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2020
We can also have $\cS(E_c)$ modules $\cS(\bd_-X_c)$ and $\cS(\bd_+X_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2021
Define
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2022
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2023
	\cS(X; c; E) \deq \hom_{\cS(E_c)}(\cS(\bd_-X_c), \cS(\bd_+X_c)) .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2024
\]
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2025
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2026
We will show that if the sphere modules are equipped with a ``compatible family of 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2027
non-degenerate inner products", then there is a coherent family of isomorphisms
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2028
$\cS(X; c; E) \cong \cS(X; c; E')$ for all pairs of choices $E$ and $E'$.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2029
This will allow us to define $\cS(X; c)$ independently of the choice of $E$.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2030
\nn{also need to (simultaneously) show compatibility with action of homeos of boundary}
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2031
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2032
First we must define ``inner product", ``non-degenerate" and ``compatible".
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2033
Let $Y$ be a decorated $n$-ball, and $\ol{Y}$ it's mirror image.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2034
(We assume we are working in the unoriented category.)
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2035
Let $Y\cup\ol{Y}$ denote the decorated $n$-sphere obtained by gluing $Y$ and $\ol{Y}$
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2036
along their common boundary.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2037
An {\it inner product} on $\cS(Y)$ is a dual vector
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2038
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2039
	z_Y : \cS(Y\cup\ol{Y}) \to \c.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2040
\]
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2041
We will also use the notation
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2042
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2043
	\langle a, b\rangle \deq z_Y(a\bullet \ol{b}) \in \c .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2044
\]
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2045
An inner product induces a linear map
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2046
\begin{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2047
	\varphi: \cS(Y) &\to& \cS(Y)^* \\
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2048
	a &\mapsto& \langle a, \cdot \rangle
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2049
\end{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2050
which satisfies, for all morphisms $e$ of $\cS(\bd Y)$,
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2051
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2052
	\varphi(ae)(b) = \langle ae, b \rangle = z_Y(a\bullet e\bullet b) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2053
			\langle a, eb \rangle = \varphi(a)(eb) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2054
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2055
In other words, $\varphi$ is a map of $\cS(\bd Y)$ modules.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2056
An inner product is {\it non-degenerate} if $\varphi$ is an isomorphism.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2057
This implies that $\cS(Y; c)$ is finite dimensional for all boundary conditions $c$.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2058
(One can think of these inner products as giving some duality in dimension $n{+}1$;
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2059
heretofore we have only assumed duality in dimensions 0 through $n$.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2060
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2061
Next we define compatibility.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2062
Let $Y = Y_1\cup Y_2$ with $D = Y_1\cap Y_2$.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2063
Let $X_1$ and $X_2$ be the two components of $Y\times I$ cut along
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2064
$D\times I$, in both cases using the pinched product.
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2065
(Here we are overloading notation and letting $D$ denote both a decorated and an undecorated
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2066
manifold.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2067
We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2068
(see Figure \ref{jun23a}).
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2069
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2070
\begin{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2071
\mathfig{.6}{tempkw/jun23a}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2072
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2073
\caption{$Y\times I$ sliced open}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2074
\label{jun23a}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2075
\end{figure}
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2076
Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2077
which agree on their boundaries, we can evaluate
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2078
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2079
	z_{Y_i}(a_i\bullet b_i\bullet v) \in \c .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2080
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2081
(This requires a choice of homeomorphism $Y_i \cup \ol{Y}_i \cup (D\times I) \cong
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2082
Y_i \cup \ol{Y}_i$, but the value of $z_{Y_i}$ is independent of this choice.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2083
We can think of $z_{Y_i}$ as giving a function
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2084
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2085
	\psi_i : \cS(Y_i) \ot \cS(\ol{Y}_i) \to \cS(D\times I)^* 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2086
					\stackrel{\varphi\inv}{\longrightarrow} \cS(D\times I) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2087
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2088
We can now finally define a family of inner products to be {\it compatible} if
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2089
for all decompositions $Y = Y_1\cup Y_2$ as above and all $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2090
we have
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2091
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2092
	z_Y(a_1\bullet a_2\bullet b_1\bullet b_2) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2093
				z_{D\times I}(\psi_1(a_1\ot b_1)\bullet \psi_2(a_2\ot b_2)) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2094
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2095
In other words, the inner product on $Y$ is determined by the inner products on
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2096
$Y_1$, $Y_2$ and $D\times I$.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2097
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2098
Now we show how to unambiguously identify $\cS(X; c; E)$ and $\cS(X; c; E')$ for any
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2099
two choices of $E$ and $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2100
Consider first the case where $\bd X$ is decomposed as three $n$-balls $A$, $B$ and $C$,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2101
with $E = \bd(A\cup B)$ and $E' = \bd A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2102
We must provide an isomorphism between $\cS(X; c; E) = \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2103
and $\cS(X; c; E') = \hom(\cS(C\cup \ol{B}), \cS(A))$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2104
Let $D = B\cap A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2105
Then as above we can construct a map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2106
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2107
	\psi: \cS(B)\ot\cS(\ol{B}) \to \cS(D\times I) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2108
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2109
Given $f\in \hom(\cS(C), \cS(A\cup B))$ we define $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2110
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2111
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2112
	\cS(C\cup \ol{B}) \stackrel{f\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2113
		\cS(A\cup B\cup \ol{B})  \stackrel{\id\ot\psi}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2114
			\cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2115
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2116
(See Figure \ref{jun23b}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2117
\begin{figure}[t]
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2118
$$
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2119
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2120
\draw (0,0) node(R) {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2121
	-- (0.75,0) node[below] {$\bar{B}$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2122
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2123
	arc (0:80:1.5) node[above] {$D \times I$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2124
	arc (80:180:1.5);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2125
\foreach \r in {0.3, 0.6, 0.9, 1.2} {
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2126
	\draw[blue!50, line width = 0.5pt] (\r,0) arc (0:180:\r);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2127
}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2128
\draw[fill=white]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2129
	(R) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2130
	arc (45:65:3) node[below] {$B$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2131
	arc (65:90:3) node[below] {$A$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2132
	arc (90:135:3) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2133
	arc (-135:-90:3) node[below] {$C$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2134
	arc (-90:-45:3);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2135
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {$D$};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2136
\node[green!50!brown] at (-2,0) {\scalebox{2.0}{$\uparrow f$}};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2137
\node[green!50!brown] at (0.2,0.8) {\scalebox{2.0}{$\uparrow \psi$}};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2138
\end{tikzpicture}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2139
$$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2140
\caption{Moving $B$ from top to bottom}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2141
\label{jun23b}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2142
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2143
Let $D' = B\cap C$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2144
Using the inner products there is an adjoint map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2145
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2146
	\psi^\dagger: \cS(D'\times I) \to \cS(\ol{B})\ot\cS(B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2147
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2148
Given $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$ we define $f\in \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2149
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2150
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2151
	\cS(C) \stackrel{\cong}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2152
		\cS(C\cup(D'\times I)) \stackrel{\id\ot\psi^\dagger}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2153
			\cS(C\cup \ol{B}\cup B)   \stackrel{f'\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2154
				\cS(A\cup B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2155
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2156
(See Figure \ref{jun23c}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2157
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2158
\begin{equation*}
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2159
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=-1.5cm]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2160
\draw (0,0) node(R) {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2161
	-- (0.75,0) node[above] {$B$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2162
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2163
	arc (0:80:1.5) node[below] {$D' \times I$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2164
	arc (80:180:1.5);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2165
\foreach \r in {0.3, 0.6, 0.9, 1.2} {
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2166
	\draw[blue!50, line width = 0.5pt] (\r,0) arc (0:180:\r);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2167
}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2168
\draw[fill=white]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2169
	(R) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2170
	arc (45:65:3) node[above] {$\bar{B}$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2171
	arc (65:90:3) node[below] {$C$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2172
	arc (90:135:3) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2173
	arc (-135:-90:3) node[below] {$A$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2174
	arc (-90:-45:3);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2175
\draw[fill]  (150:1.5) circle (2pt) node[below=4pt] {$D'$};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2176
\node[green!50!brown] at (-2,0) {\scalebox{2.0}{$f'\uparrow $}};
447
ba4f86b15ff0 more a-inf section
Kevin Walker <kevin@canyon23.net>
parents: 446
diff changeset
  2177
\node[green!50!brown] at (0.2,0.8) {\scalebox{2.0}{$\psi^\dagger \uparrow $}};
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2178
\end{tikzpicture}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2179
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2180
\caption{Moving $B$ from bottom to top}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2181
\label{jun23c}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2182
\end{figure}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2183
Let $D' = B\cap C$.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2184
It is not hard too show that the above two maps are mutually inverse.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2185
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2186
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2187
Any two choices of $E$ and $E'$ are related by a series of modifications as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2188
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2189
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2190
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2191
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2192
$E$ and $E'$ are isotopic, and any isotopy is 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2193
homotopic to a composition of small isotopies which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2194
(a) supported away from $E$, or (b) modify $E$ in the simple manner described above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2195
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2196
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2197
It follows from the lemma that we can construct an isomorphism
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2198
between $\cS(X; c; E)$ and $\cS(X; c; E')$ for any pair $E$, $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2199
This construction involves on a choice of simple ``moves" (as above) to transform
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2200
$E$ to $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2201
We must now show that the isomorphism does not depend on this choice.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2202
We will show below that it suffice to check three ``movie moves".
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2203
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2204
The first movie move is to push $E$ across an $n$-ball $B$ as above, then push it back.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2205
The result is equivalent to doing nothing.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2206
As we remarked above, the isomorphisms corresponding to these two pushes are mutually
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2207
inverse, so we have invariance under this movie move.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2208
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2209
The second movie move replaces two successive pushes in the same direction,
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2210
across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$.
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2211
(See Figure \ref{jun23d}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2212
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2213
\begin{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2214
\mathfig{.9}{tempkw/jun23d}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2215
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2216
\caption{A movie move}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2217
\label{jun23d}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2218
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2219
Invariance under this movie move follows from the compatibility of the inner
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2220
product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2221
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2222
The third movie move could be called ``locality" or ``disjoint commutativity".
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2223
\nn{...}
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2224
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2225
If $n\ge 2$, these three movie move suffice:
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2226
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2227
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2228
Assume $n\ge 2$ and fix $E$ and $E'$ as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2229
The any two sequences of elementary moves connecting $E$ to $E'$
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2230
are related by a sequence of the three movie moves defined above.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2231
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2232
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2233
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2234
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2235
Consider a two parameter family of diffeomorphisms (one parameter family of isotopies) 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2236
of $\bd X$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2237
Up to homotopy,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2238
such a family is homotopic to a family which can be decomposed 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2239
into small families which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2240
(a) supported away from $E$, 
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2241
(b) have boundaries corresponding to the three movie moves above.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2242
Finally, observe that the space of $E$'s is simply connected.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2243
(This fails for $n=1$.)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2244
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2245
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2246
For $n=1$ we have to check an additional ``global" relations corresponding to 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2247
rotating the 0-sphere $E$ around the 1-sphere $\bd X$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2248
\nn{should check this global move, or maybe cite Frobenius reciprocity result}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2249
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2250
\nn{...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2251
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2252
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2253
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2254
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2255
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  2256
\nn{to be continued...}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2257
\medskip
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2258
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2259
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2260
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2261
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2262
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2263
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2264
Stuff that remains to be done (either below or in an appendix or in a separate section or in
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2265
a separate paper):
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2266
\begin{itemize}
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2267
\item discuss Morita equivalence
139
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 134
diff changeset
  2268
\item functors
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2269
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2270
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  2271