text/ncat.tex
author Scott Morrison <scott@tqft.net>
Wed, 15 Sep 2010 13:33:14 -0500
changeset 535 07b79f81c956
parent 531 da9bf150bf3d
child 543 0bc6fa29b62a
permissions -rw-r--r--
numbering axioms and module axioms as 7.x
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
     4
\def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
     6
\section{\texorpdfstring{$n$}{n}-categories and their modules}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
\label{sec:ncats}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
     9
\subsection{Definition of \texorpdfstring{$n$}{n}-categories}
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
    10
\label{ss:n-cat-def}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
    11
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
Before proceeding, we need more appropriate definitions of $n$-categories, 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    13
$A_\infty$ $n$-categories, as well as modules for these, and tensor products of these modules.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    14
(As is the case throughout this paper, by ``$n$-category" we mean some notion of
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    15
a ``weak" $n$-category with ``strong duality".)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    16
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    17
The definitions presented below tie the categories more closely to the topology
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    18
and avoid combinatorial questions about, for example, the minimal sufficient
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    19
collections of generalized associativity axioms; we prefer maximal sets of axioms to minimal sets.
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
    20
It is easy to show that examples of topological origin
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    21
(e.g.\ categories whose morphisms are maps into spaces or decorated balls), 
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    22
satisfy our axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    23
For examples of a more purely algebraic origin, one would typically need the combinatorial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    24
results that we have avoided here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    25
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
    26
%\nn{Say something explicit about Lurie's work here? 
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
    27
%It seems like this was something that Dan Freed wanted explaining when we talked to him in Aspen}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    28
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    29
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    30
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    31
There are many existing definitions of $n$-categories, with various intended uses.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    32
In any such definition, there are sets of $k$-morphisms for each $0 \leq k \leq n$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    33
Generally, these sets are indexed by instances of a certain typical shape. 
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
    34
Some $n$-category definitions model $k$-morphisms on the standard bihedron (interval, bigon, and so on).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    35
Other definitions have a separate set of 1-morphisms for each interval $[0,l] \sub \r$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    36
a separate set of 2-morphisms for each rectangle $[0,l_1]\times [0,l_2] \sub \r^2$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    37
and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
(This allows for strict associativity.)
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    39
Still other definitions (see, for example, \cite{MR2094071})
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    40
model the $k$-morphisms on more complicated combinatorial polyhedra.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    41
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    42
For our definition, we will allow our $k$-morphisms to have any shape, so long as it is homeomorphic to the standard $k$-ball.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    43
Thus we associate a set of $k$-morphisms $\cC_k(X)$ to any $k$-manifold $X$ homeomorphic 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    44
to the standard $k$-ball.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    45
By ``a $k$-ball" we mean any $k$-manifold which is homeomorphic to the 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    46
standard $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    47
We {\it do not} assume that it is equipped with a 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    48
preferred homeomorphism to the standard $k$-ball, and the same applies to ``a $k$-sphere" below.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    49
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    50
Given a homeomorphism $f:X\to Y$ between $k$-balls (not necessarily fixed on 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    51
the boundary), we want a corresponding
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    52
bijection of sets $f:\cC(X)\to \cC(Y)$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    53
(This will imply ``strong duality", among other things.) Putting these together, we have
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    54
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    55
\begin{axiom}[Morphisms]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    56
\label{axiom:morphisms}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    57
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    58
the category of $k$-balls and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    59
homeomorphisms to the category of sets and bijections.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    60
\end{axiom}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    61
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    62
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    63
(Note: We often omit the subscript $k$.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    64
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    65
We are being deliberately vague about what flavor of $k$-balls
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    66
we are considering.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    67
They could be unoriented or oriented or Spin or $\mbox{Pin}_\pm$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
They could be topological or PL or smooth.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    69
%\nn{need to check whether this makes much difference}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    70
(If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
    71
to be fussier about corners and boundaries.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
For each flavor of manifold there is a corresponding flavor of $n$-category.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    73
For simplicity, we will concentrate on the case of PL unoriented manifolds.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    74
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    75
An ambitious reader may want to keep in mind two other classes of balls.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    76
The first is balls equipped with a map to some other space $Y$ (c.f. \cite{MR2079378}). 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    77
This will be used below (see the end of \S \ref{ss:product-formula}) to describe the blob complex of a fiber bundle with
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    78
base space $Y$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    79
The second is balls equipped with a section of the tangent bundle, or the frame
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    80
bundle (i.e.\ framed balls), or more generally some partial flag bundle associated to the tangent bundle.
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    81
These can be used to define categories with less than the ``strong" duality we assume here,
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    82
though we will not develop that idea fully in this paper.
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    83
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    84
Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    85
of morphisms).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    86
The 0-sphere is unusual among spheres in that it is disconnected.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    87
Correspondingly, for 1-morphisms it makes sense to distinguish between domain and range.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    88
(Actually, this is only true in the oriented case, with 1-morphisms parameterized
359
6224e50c9311 metric independence for homeo action (proof done now)
Kevin Walker <kevin@canyon23.net>
parents: 356
diff changeset
    89
by {\it oriented} 1-balls.)
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    90
For $k>1$ and in the presence of strong duality the division into domain and range makes less sense.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    91
For example, in a pivotal tensor category, there are natural isomorphisms $\Hom{}{A}{B \tensor C} \isoto \Hom{}{B^* \tensor A}{C}$, etc. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    92
(sometimes called ``Frobenius reciprocity''), which canonically identify all the morphism spaces which have the same boundary.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    93
We prefer not to make the distinction in the first place.
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    94
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    95
Instead, we will combine the domain and range into a single entity which we call the 
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    96
boundary of a morphism.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    97
Morphisms are modeled on balls, so their boundaries are modeled on spheres.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    98
In other words, we need to extend the functors $\cC_{k-1}$ from balls to spheres, for 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    99
$1\le k \le n$.
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   100
At first it might seem that we need another axiom for this, but in fact once we have
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   101
all the axioms in this subsection for $0$ through $k-1$ we can use a colimit
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
   102
construction, as described in \S\ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   103
to spheres (and any other manifolds):
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   104
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   105
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   106
\label{lem:spheres}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   107
For each $1 \le k \le n$, we have a functor $\cl{\cC}_{k-1}$ from 
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   108
the category of $k{-}1$-spheres and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   109
homeomorphisms to the category of sets and bijections.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   110
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   111
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   112
We postpone the proof of this result until after we've actually given all the axioms.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   113
Note that defining this functor for some $k$ only requires the data described in Axiom \ref{axiom:morphisms} at level $k$, 
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   114
along with the data described in the other axioms at lower levels. 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   115
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   116
%In fact, the functors for spheres are entirely determined by the functors for balls and the subsequent axioms. (In particular, $\cC(S^k)$ is the colimit of $\cC$ applied to decompositions of $S^k$ into balls.) However, it is easiest to think of it as additional data at this point.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   117
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   118
\begin{axiom}[Boundaries]\label{nca-boundary}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   119
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cl{\cC}_{k-1}(\bd X)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   120
These maps, for various $X$, comprise a natural transformation of functors.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   121
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   122
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   123
Note that the first ``$\bd$" above is part of the data for the category, 
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   124
while the second is the ordinary boundary of manifolds.
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   125
Given $c\in\cl{\cC}(\bd(X))$, we will write $\cC(X; c)$ for $\bd^{-1}(c)$, those morphisms with specified boundary $c$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   127
Most of the examples of $n$-categories we are interested in are enriched in the following sense.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   128
The various sets of $n$-morphisms $\cC(X; c)$, for all $n$-balls $X$ and
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   129
all $c\in \cl{\cC}(\bd X)$, have the structure of an object in some auxiliary symmetric monoidal category
522
Kevin Walker <kevin@canyon23.net>
parents: 512
diff changeset
   130
with sufficient limits and colimits
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
(e.g.\ vector spaces, or modules over some ring, or chain complexes),
522
Kevin Walker <kevin@canyon23.net>
parents: 512
diff changeset
   132
%\nn{actually, need both disj-union/sum and product/tensor-product; what's the name for this sort of cat?}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   133
and all the structure maps of the $n$-category should be compatible with the auxiliary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   134
category structure.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   135
Note that this auxiliary structure is only in dimension $n$; if $\dim(Y) < n$ then 
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   136
$\cC(Y; c)$ is just a plain set.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   137
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   138
\medskip
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   139
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   140
In order to simplify the exposition we have concentrated on the case of 
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   141
unoriented PL manifolds and avoided the question of what exactly we mean by 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   142
the boundary of a manifold with extra structure, such as an oriented manifold.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   143
In general, all manifolds of dimension less than $n$ should be equipped with the germ
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   144
of a thickening to dimension $n$, and this germ should carry whatever structure we have 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   145
on $n$-manifolds.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   146
In addition, lower dimensional manifolds should be equipped with a framing
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   147
of their normal bundle in the thickening; the framing keeps track of which
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   148
side (iterated) bounded manifolds lie on.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   149
For example, the boundary of an oriented $n$-ball
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   150
should be an $n{-}1$-sphere equipped with an orientation of its once stabilized tangent
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   151
bundle and a choice of direction in this bundle indicating
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   152
which side the $n$-ball lies on.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   153
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   154
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   155
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   156
We have just argued that the boundary of a morphism has no preferred splitting into
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   157
domain and range, but the converse meets with our approval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   158
That is, given compatible domain and range, we should be able to combine them into
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   159
the full boundary of a morphism.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   160
The following lemma will follow from the colimit construction used to define $\cl{\cC}_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   161
on spheres.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   162
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   163
\begin{lem}[Boundary from domain and range]
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   164
\label{lem:domain-and-range}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   165
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   166
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   167
Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the 
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   168
two maps $\bd: \cC(B_i)\to \cl{\cC}(E)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   169
Then we have an injective map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   170
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   171
	\gl_E : \cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2) \into \cl{\cC}(S)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   172
\]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   173
which is natural with respect to the actions of homeomorphisms.
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   174
(When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   175
becomes a normal product.)
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   176
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   177
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   178
\begin{figure}[!ht]
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   179
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   180
\begin{tikzpicture}[%every label/.style={green}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   181
]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   182
\node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   183
\node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   184
\draw (S) arc  (-90:90:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   185
\draw (N) arc  (90:270:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   186
\node[left] at (-1,1) {$B_1$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   187
\node[right] at (1,1) {$B_2$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   188
\end{tikzpicture}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   189
$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   190
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   191
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   192
Note that we insist on injectivity above. 
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   193
The lemma follows from Definition \ref{def:colim-fields} and Lemma \ref{lem:colim-injective}.
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   194
%\nn{we might want a more official looking proof...}
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   195
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   196
Let $\cl{\cC}(S)_E$ denote the image of $\gl_E$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   197
We will refer to elements of $\cl{\cC}(S)_E$ as ``splittable along $E$" or ``transverse to $E$". 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   198
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   199
If $X$ is a $k$-ball and $E \sub \bd X$ splits $\bd X$ into two $k{-}1$-balls $B_1$ and $B_2$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   200
as above, then we define $\cC(X)_E = \bd^{-1}(\cl{\cC}(\bd X)_E)$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   201
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   202
We will call the projection $\cl{\cC}(S)_E \to \cC(B_i)$
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   203
a {\it restriction} map and write $\res_{B_i}(a)$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   204
(or simply $\res(a)$ when there is no ambiguity), for $a\in \cl{\cC}(S)_E$.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   205
More generally, we also include under the rubric ``restriction map"
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   206
the boundary maps of Axiom \ref{nca-boundary} above,
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   207
another class of maps introduced after Axiom \ref{nca-assoc} below, as well as any composition
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   208
of restriction maps.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   209
In particular, we have restriction maps $\cC(X)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   210
($i = 1, 2$, notation from previous paragraph).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   211
These restriction maps can be thought of as 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   212
domain and range maps, relative to the choice of splitting $\bd X = B_1 \cup_E B_2$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   213
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   214
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   215
Next we consider composition of morphisms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   216
For $n$-categories which lack strong duality, one usually considers
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
$k$ different types of composition of $k$-morphisms, each associated to a different direction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   218
(For example, vertical and horizontal composition of 2-morphisms.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   219
In the presence of strong duality, these $k$ distinct compositions are subsumed into 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   220
one general type of composition which can be in any ``direction".
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   221
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   222
\begin{axiom}[Composition]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   223
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   224
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   225
Let $E = \bd Y$, which is a $k{-}2$-sphere.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   226
Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   227
We have restriction (domain or range) maps $\cC(B_i)_E \to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   228
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   229
We have a map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   230
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   231
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   232
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   233
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   234
to the intersection of the boundaries of $B$ and $B_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   235
If $k < n$ we require that $\gl_Y$ is injective.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   236
(For $k=n$, see below.)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   237
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   238
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   239
\begin{figure}[!ht]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   240
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   241
\begin{tikzpicture}[%every label/.style={green},
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   242
				x=1.5cm,y=1.5cm]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   243
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   244
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   245
\draw (S) arc  (-90:90:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   246
\draw (N) arc  (90:270:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   247
\draw (N) -- (S);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   248
\node[left] at (-1/4,1) {$B_1$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   249
\node[right] at (1/4,1) {$B_2$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   250
\node at (1/6,3/2)  {$Y$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   251
\end{tikzpicture}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   252
$$
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   253
\caption{From two balls to one ball.}\label{blah5}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   254
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   255
\begin{axiom}[Strict associativity] \label{nca-assoc}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   256
The composition (gluing) maps above are strictly associative.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   257
Given any splitting of a ball $B$ into smaller balls
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   258
$$\bigsqcup B_i \to B,$$ 
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   259
any sequence of gluings (in the sense of Definition \ref{defn:gluing-decomposition}, where all the intermediate steps are also disjoint unions of balls) yields the same result.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   260
\end{axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   261
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   262
\begin{figure}[!ht]
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   263
$$\mathfig{.65}{ncat/strict-associativity}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   264
\caption{An example of strict associativity.}\label{blah6}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   265
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   266
We'll use the notation  $a\bullet b$ for the glued together field $\gl_Y(a, b)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   267
In the other direction, we will call the projection from $\cC(B)_E$ to $\cC(B_i)_E$ 
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   268
a restriction map (one of many types of map so called) and write $\res_{B_i}(a)$ for $a\in \cC(B)_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   269
%Compositions of boundary and restriction maps will also be called restriction maps.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   270
%For example, if $B$ is a $k$-ball and $Y\sub \bd B$ is a $k{-}1$-ball, there is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   271
%restriction map from $\cC(B)_{\bd Y}$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   272
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   273
We will write $\cC(B)_Y$ for the image of $\gl_Y$ in $\cC(B)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   274
We will call elements of $\cC(B)_Y$ morphisms which are 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   275
``splittable along $Y$'' or ``transverse to $Y$''.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   276
We have $\cC(B)_Y \sub \cC(B)_E \sub \cC(B)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   277
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   278
More generally, let $\alpha$ be a splitting of $X$ into smaller balls.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   279
Let $\cC(X)_\alpha \sub \cC(X)$ denote the image of the iterated gluing maps from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   280
the smaller balls to $X$.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   281
We  say that elements of $\cC(X)_\alpha$ are morphisms which are ``splittable along $\alpha$".
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   282
In situations where the splitting is notationally anonymous, we will write
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   283
$\cC(X)\spl$ for the morphisms which are splittable along (a.k.a.\ transverse to)
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   284
the unnamed splitting.
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   285
If $\beta$ is a ball decomposition of $\bd X$, we define $\cC(X)_\beta \deq \bd\inv(\cl{\cC}(\bd X)_\beta)$;
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   286
this can also be denoted $\cC(X)\spl$ if the context contains an anonymous
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   287
decomposition of $\bd X$ and no competing splitting of $X$.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   288
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   289
The above two composition axioms are equivalent to the following one,
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   290
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   291
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   292
\xxpar{Multi-composition:}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   293
{Given any splitting $B_1 \sqcup \cdots \sqcup B_m \to B$ of a $k$-ball
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   294
into small $k$-balls, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   295
map from an appropriate subset (like a fibered product) 
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   296
of $\cC(B_1)\spl\times\cdots\times\cC(B_m)\spl$ to $\cC(B)\spl$,
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   297
and these various $m$-fold composition maps satisfy an
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   298
operad-type strict associativity condition (Figure \ref{fig:operad-composition}).}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   299
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   300
\begin{figure}[!ht]
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   301
$$\mathfig{.8}{ncat/operad-composition}$$
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   302
\caption{Operad composition and associativity}\label{fig:operad-composition}\end{figure}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   303
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   304
The next axiom is related to identity morphisms, though that might not be immediately obvious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   305
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   306
\begin{axiom}[Product (identity) morphisms, preliminary version]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   307
For each $k$-ball $X$ and $m$-ball $D$, with $k+m \le n$, there is a map $\cC(X)\to \cC(X\times D)$, 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   308
usually denoted $a\mapsto a\times D$ for $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   309
These maps must satisfy the following conditions.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   310
\begin{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   311
\item
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   312
If $f:X\to X'$ and $\tilde{f}:X\times D \to X'\times D'$ are homeomorphisms such that the diagram
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   313
\[ \xymatrix{
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   314
	X\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & X'\times D' \ar[d]^{\pi} \\
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   315
	X \ar[r]^{f} & X'
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   316
} \]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   317
commutes, then we have 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   318
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   319
	\tilde{f}(a\times D) = f(a)\times D' .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   320
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   321
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   322
Product morphisms are compatible with gluing (composition) in both factors:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   323
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   324
	(a'\times D)\bullet(a''\times D) = (a'\bullet a'')\times D
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   325
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   326
and
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   327
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   328
	(a\times D')\bullet(a\times D'') = a\times (D'\bullet D'') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   329
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   330
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   331
Product morphisms are associative:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   332
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   333
	(a\times D)\times D' = a\times (D\times D') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   334
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   335
(Here we are implicitly using functoriality and the obvious homeomorphism
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   336
$(X\times D)\times D' \to X\times(D\times D')$.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   337
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   338
Product morphisms are compatible with restriction:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   339
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   340
	\res_{X\times E}(a\times D) = a\times E
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   341
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   342
for $E\sub \bd D$ and $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   343
\end{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   344
\end{axiom}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   345
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   346
We will need to strengthen the above preliminary version of the axiom to allow
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   347
for products which are ``pinched" in various ways along their boundary.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   348
(See Figure \ref{pinched_prods}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   349
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   350
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   351
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   352
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   353
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   354
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   355
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   356
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   357
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   358
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   359
\draw[blue,line width=1.5pt] (0,-3) -- (5.66,-3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   360
\draw[->,red,line width=2pt] (2.83,-1.5) -- (2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   361
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   362
\qquad \qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   363
\begin{tikzpicture}[baseline=-0.15cm]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   364
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   365
\path[clip] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   366
\draw[blue,line width=2pt] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   367
\foreach \x in {-6, -5.5, ..., 0} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   368
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   369
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   370
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   371
\draw[blue,line width=1.5pt] (-5.66,-3.15) -- (0,-3.15);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   372
\draw[->,red,line width=2pt] (-2.83,-1.5) -- (-2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   373
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   374
$$
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   375
\caption{Examples of pinched products}\label{pinched_prods}
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   376
\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   377
(The need for a strengthened version will become apparent in Appendix \ref{sec:comparing-defs}
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   378
where we construct a traditional category from a topological category.)
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   379
Define a {\it pinched product} to be a map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   380
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   381
	\pi: E\to X
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   382
\]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   383
such that $E$ is a $k{+}m$-ball, $X$ is a $k$-ball ($m\ge 1$), and $\pi$ is locally modeled
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   384
on a standard iterated degeneracy map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   385
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   386
	d: \Delta^{k+m}\to\Delta^k .
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   387
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   388
(We thank Kevin Costello for suggesting this approach.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   389
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   390
Note that for each interior point $x\in X$, $\pi\inv(x)$ is an $m$-ball,
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   391
and for each boundary point $x\in\bd X$, $\pi\inv(x)$ is a ball of dimension
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   392
$l \le m$, with $l$ depending on $x$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   393
It is easy to see that a composition of pinched products is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   394
A {\it sub pinched product} is a sub-$m$-ball $E'\sub E$ such that the restriction
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   395
$\pi:E'\to \pi(E')$ is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   396
A {union} of pinched products is a decomposition $E = \cup_i E_i$
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   397
such that each $E_i\sub E$ is a sub pinched product.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   398
(See Figure \ref{pinched_prod_unions}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   399
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   400
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   401
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   402
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   403
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   404
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   405
\draw[blue] (0,0) -- (5.66,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   406
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   407
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   408
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   409
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   410
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   411
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   412
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   413
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   414
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   415
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   416
\draw[blue] (0,0) -- (5,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   417
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   418
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   419
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   420
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   421
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   422
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   423
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   424
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   425
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   426
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   427
\draw[blue] (2.83,3) circle (3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   428
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   429
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   430
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   431
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   432
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   433
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   434
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   435
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   436
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   437
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   438
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   439
\draw[blue] (0,-1) -- (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   440
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   441
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   442
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   443
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   444
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   445
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   446
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   447
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   448
\path[clip] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   449
\draw[blue,line width=2pt] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   450
\draw[blue] (1,-1) .. controls  (2,-1) and (3,1) .. (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   451
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   452
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   453
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   454
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   455
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   456
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   457
\caption{Five examples of unions of pinched products}\label{pinched_prod_unions}
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   458
\end{figure}
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   459
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   460
The product axiom will give a map $\pi^*:\cC(X)\to \cC(E)$ for each pinched product
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   461
$\pi:E\to X$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   462
Morphisms in the image of $\pi^*$ will be called product morphisms.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   463
Before stating the axiom, we illustrate it in our two motivating examples of $n$-categories.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   464
In the case where $\cC(X) = \{f: X\to T\}$, we define $\pi^*(f) = f\circ\pi$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   465
In the case where $\cC(X)$ is the set of all labeled embedded cell complexes $K$ in $X$, 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   466
define $\pi^*(K) = \pi\inv(K)$, with each codimension $i$ cell $\pi\inv(c)$ labeled by the
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   467
same (traditional) $i$-morphism as the corresponding codimension $i$ cell $c$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   468
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   469
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   470
\addtocounter{axiom}{-1}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   471
\begin{axiom}[Product (identity) morphisms]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   472
For each pinched product $\pi:E\to X$, with $X$ a $k$-ball and $E$ a $k{+}m$-ball ($m\ge 1$),
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   473
there is a map $\pi^*:\cC(X)\to \cC(E)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   474
These maps must satisfy the following conditions.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   475
\begin{enumerate}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   476
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   477
If $\pi:E\to X$ and $\pi':E'\to X'$ are pinched products, and
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   478
if $f:X\to X'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   479
\[ \xymatrix{
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   480
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   481
	X \ar[r]^{f} & X'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   482
} \]
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   483
commutes, then we have 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   484
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   485
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   486
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   487
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   488
Product morphisms are compatible with gluing (composition).
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   489
Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   490
be pinched products with $E = E_1\cup E_2$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   491
Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\sub X$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   492
Then 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   493
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   494
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   495
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   496
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   497
Product morphisms are associative.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   498
If $\pi:E\to X$ and $\rho:D\to E$ are pinched products then
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   499
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   500
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   501
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   502
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   503
Product morphisms are compatible with restriction.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   504
If we have a commutative diagram
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   505
\[ \xymatrix{
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   506
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   507
	Y \ar@{^(->}[r] & X
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   508
} \]
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   509
such that $\rho$ and $\pi$ are pinched products, then
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   510
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   511
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   512
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   513
\end{enumerate}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   514
\end{axiom}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   515
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   516
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   517
\medskip
128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   518
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   519
All of the axioms listed above hold for both ordinary $n$-categories and $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   520
The last axiom (below), concerning actions of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   521
homeomorphisms in the top dimension $n$, distinguishes the two cases.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   522
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   523
We start with the plain $n$-category case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   524
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   525
\begin{axiom}[\textup{\textbf{[preliminary]}} Isotopy invariance in dimension $n$]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   526
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   527
to the identity on $\bd X$ and is isotopic (rel boundary) to the identity.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   528
Then $f$ acts trivially on $\cC(X)$; that is $f(a) = a$ for all $a\in \cC(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   529
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   530
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   531
This axiom needs to be strengthened to force product morphisms to act as the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   532
Let $X$ be an $n$-ball and $Y\sub\bd X$ be an $n{-}1$-ball.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   533
Let $J$ be a 1-ball (interval).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   534
We have a collaring homeomorphism $s_{Y,J}: X\cup_Y (Y\times J) \to X$.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   535
(Here we use $Y\times J$ with boundary entirely pinched.)
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   536
We define a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   537
\begin{eqnarray*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   538
	\psi_{Y,J}: \cC(X) &\to& \cC(X) \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   539
	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   540
\end{eqnarray*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   541
(See Figure \ref{glue-collar}.)
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   542
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   543
\begin{equation*}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   544
\begin{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   545
\def\rad{1}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   546
\def\srad{0.75}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   547
\def\gap{4.5}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   548
\foreach \i in {0, 1, 2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   549
	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   550
	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   551
	\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   552
		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   553
	}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   554
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   555
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   556
\begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   557
	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   558
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   559
\node[right=1mm] at (0.east) {$a$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   560
\draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   561
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   562
\draw (1-small)  circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   563
\foreach \theta in {90, 72, ..., -90} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   564
	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   565
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   566
\filldraw[fill=white] (1) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   567
\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   568
	\fill (intersection \n of 1-small and 1) circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   569
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   570
\node[below] at (1-small.south) {$a \times J$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   571
\draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   572
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   573
\begin{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   574
\path[clip] (2) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   575
\draw[clip] (2.east) circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   576
\foreach \y in {1, 0.86, ..., -1} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   577
	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   578
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   579
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   580
\end{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   581
\end{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   582
\begin{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   583
\xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   584
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   585
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   586
\caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   587
We call a map of this form a {\it collar map}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   588
It can be thought of as the action of the inverse of
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   589
a map which projects a collar neighborhood of $Y$ onto $Y$,
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   590
or as the limit of homeomorphisms $X\to X$ which expand a very thin collar of $Y$
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   591
to a larger collar.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   592
We call the equivalence relation generated by collar maps and homeomorphisms
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   593
isotopic (rel boundary) to the identity {\it extended isotopy}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   594
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   595
The revised axiom is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   596
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   597
\addtocounter{axiom}{-1}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
   598
\begin{axiom}[\textup{\textbf{[plain  version]}} Extended isotopy invariance in dimension $n$.]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   599
\label{axiom:extended-isotopies}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   600
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   601
to the identity on $\bd X$ and isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   602
Then $f$ acts trivially on $\cC(X)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   603
In addition, collar maps act trivially on $\cC(X)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   604
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   605
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   606
\smallskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   607
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   608
For $A_\infty$ $n$-categories, we replace
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   609
isotopy invariance with the requirement that families of homeomorphisms act.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   610
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   611
Let $\Homeo_\bd(X)$ denote homeomorphisms of $X$ which fix $\bd X$ and
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   612
$C_*(\Homeo_\bd(X))$ denote the singular chains on this space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   613
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   614
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   615
\addtocounter{axiom}{-1}
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   616
\begin{axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$.]
335
9bf409eb5040 mostly finished inserting \cl
Scott Morrison <scott@tqft.net>
parents: 334
diff changeset
   617
For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   618
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   619
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   620
\]
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   621
These action maps are required to be associative up to homotopy,
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   622
%\nn{iterated homotopy?}
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   623
and also compatible with composition (gluing) in the sense that
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
   624
a diagram like the one in Theorem \ref{thm:CH} commutes.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   625
%\nn{repeat diagram here?}
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   626
%\nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   627
\end{axiom}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   628
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   629
We should strengthen the above $A_\infty$ axiom to apply to families of collar maps.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   630
To do this we need to explain how collar maps form a topological space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   631
Roughly, the set of collared $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   632
and we can replace the class of all intervals $J$ with intervals contained in $\r$.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   633
Having chains on the space of collar maps act gives rise to coherence maps involving
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   634
weak identities.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   635
We will not pursue this in detail here.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   636
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   637
Note that if we take homology of chain complexes, we turn an $A_\infty$ $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   638
into a plain $n$-category (enriched over graded groups).
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   639
In a different direction, if we enrich over topological spaces instead of chain complexes,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   640
we get a space version of an $A_\infty$ $n$-category, with $\Homeo_\bd(X)$ acting 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   641
instead of  $C_*(\Homeo_\bd(X))$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   642
Taking singular chains converts such a space type $A_\infty$ $n$-category into a chain complex
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   643
type $A_\infty$ $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   644
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   645
\medskip
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   646
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   647
The alert reader will have already noticed that our definition of a (plain) $n$-category
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   648
is extremely similar to our definition of a system of fields.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   649
There are two differences.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   650
First, for the $n$-category definition we restrict our attention to balls
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   651
(and their boundaries), while for fields we consider all manifolds.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   652
Second,  in category definition we directly impose isotopy
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   653
invariance in dimension $n$, while in the fields definition we 
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   654
instead remember a subspace of local relations which contain differences of isotopic fields. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   655
(Recall that the compensation for this complication is that we can demand that the gluing map for fields is injective.)
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   656
Thus a system of fields and local relations $(\cF,U)$ determines an $n$-category $\cC_ {\cF,U}$ simply by restricting our attention to
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   657
balls and, at level $n$, quotienting out by the local relations:
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   658
\begin{align*}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   659
\cC_{\cF,U}(B^k) & = \begin{cases}\cF(B) & \text{when $k<n$,} \\ \cF(B) / U(B) & \text{when $k=n$.}\end{cases}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   660
\end{align*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   661
This $n$-category can be thought of as the local part of the fields.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   662
Conversely, given a topological $n$-category we can construct a system of fields via 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   663
a colimit construction; see \S \ref{ss:ncat_fields} below.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   664
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
   665
\subsection{Examples of \texorpdfstring{$n$}{n}-categories}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   666
\label{ss:ncat-examples}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   667
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   668
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   669
We now describe several classes of examples of $n$-categories satisfying our axioms.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   670
We typically specify only the morphisms; the rest of the data for the category
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   671
(restriction maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   672
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   673
\begin{example}[Maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   674
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   675
\label{ex:maps-to-a-space}%
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   676
Let $T$ be a topological space.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   677
We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   678
For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   679
all continuous maps from $X$ to $T$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   680
For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   681
homotopies fixed on $\bd X$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   682
(Note that homotopy invariance implies isotopy invariance.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   683
For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   684
be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   685
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   686
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   687
\noop{
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   688
Recall we described a system of fields and local relations based on maps to $T$ in Example \ref{ex:maps-to-a-space(fields)} above.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   689
Constructing a system of fields from $\pi_{\leq n}(T)$ recovers that example.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   690
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   691
an n-cat}
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   692
}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   693
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   694
\begin{example}[Maps to a space, with a fiber] \label{ex:maps-with-fiber}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   695
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   696
\label{ex:maps-to-a-space-with-a-fiber}%
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   697
We can modify the example above, by fixing a
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   698
closed $m$-manifold $F$, and defining $\pi^{\times F}_{\leq n}(T)(X) = \Maps(X \times F \to T)$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   699
otherwise leaving the definition in Example \ref{ex:maps-to-a-space} unchanged.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   700
Taking $F$ to be a point recovers the previous case.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   701
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   702
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   703
\begin{example}[Linearized, twisted, maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   704
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   705
\label{ex:linearized-maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   706
We can linearize Examples \ref{ex:maps-to-a-space} and \ref{ex:maps-to-a-space-with-a-fiber} as follows.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   707
Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   708
(have in mind the trivial cocycle).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   709
For $X$ of dimension less than $n$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X)$ as before, ignoring $\alpha$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   710
For $X$ an $n$-ball and $c\in \Maps(\bdy X \times F \to T)$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X; c)$ to be
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   711
the $R$-module of finite linear combinations of continuous maps from $X\times F$ to $T$,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   712
modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   713
$h: X\times F\times I \to T$, then $a = \alpha(h)b$.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   714
(In order for this to be well-defined we must choose $\alpha$ to be zero on degenerate simplices.
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   715
Alternatively, we could equip the balls with fundamental classes.)
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   716
\end{example}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   717
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   718
\begin{example}[$n$-categories from TQFTs]
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   719
\rm
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   720
\label{ex:ncats-from-tqfts}%
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   721
Let $\cF$ be a TQFT in the sense of \S\ref{sec:fields}: an $n$-dimensional 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   722
system of fields (also denoted $\cF$) and local relations.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   723
Let $W$ be an $n{-}j$-manifold.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   724
Define the $j$-category $\cF(W)$ as follows.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   725
If $X$ is a $k$-ball with $k<j$, let $\cF(W)(X) \deq \cF(W\times X)$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   726
If $X$ is a $j$-ball and $c\in \cl{\cF(W)}(\bd X)$, 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   727
let $\cF(W)(X; c) \deq A_\cF(W\times X; c)$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   728
\end{example}
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   729
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   730
The next example is only intended to be illustrative, as we don't specify 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   731
which definition of a ``traditional $n$-category" we intend.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   732
Further, most of these definitions don't even have an agreed-upon notion of 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   733
``strong duality", which we assume here.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   734
\begin{example}[Traditional $n$-categories]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   735
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   736
\label{ex:traditional-n-categories}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   737
Given a ``traditional $n$-category with strong duality" $C$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   738
define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   739
to be the set of all $C$-labeled embedded cell complexes of $X$ (c.f. \S \ref{sec:fields}).
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
   740
For $X$ an $n$-ball and $c\in \cl{\cC}(\bd X)$, define $\cC(X; c)$ to be finite linear
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   741
combinations of $C$-labeled embedded cell complexes of $X$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   742
modulo the kernel of the evaluation map.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   743
Define a product morphism $a\times D$, for $D$ an $m$-ball, to be the product of the cell complex of $a$ with $D$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   744
with each cell labelled according to the corresponding cell for $a$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   745
(These two cells have the same codimension.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   746
More generally, start with an $n{+}m$-category $C$ and a closed $m$-manifold $F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   747
Define $\cC(X)$, for $\dim(X) < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   748
to be the set of all $C$-labeled embedded cell complexes of $X\times F$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   749
Define $\cC(X; c)$, for $X$ an $n$-ball,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   750
to be the dual Hilbert space $A(X\times F; c)$.
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
   751
(See \S\ref{sec:constructing-a-tqft}.)
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   752
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   753
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   754
\noop{
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   755
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   756
an n-cat}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   757
Recall we described a system of fields and local relations based on a ``traditional $n$-category" 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   758
$C$ in Example \ref{ex:traditional-n-categories(fields)} above.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   759
\nn{KW: We already refer to \S \ref{sec:fields} above}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   760
Constructing a system of fields from $\cC$ recovers that example. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   761
\todo{Except that it doesn't: pasting diagrams v.s. string diagrams.}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   762
\nn{KW: but the above example is all about string diagrams.  the only difference is at the top level,
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   763
where the quotient is built in.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   764
but (string diagrams)/(relations) is isomorphic to 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   765
(pasting diagrams composed of smaller string diagrams)/(relations)}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   766
}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   767
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   768
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   769
\newcommand{\Bord}{\operatorname{Bord}}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   770
\begin{example}[The bordism $n$-category, plain version]
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   771
\label{ex:bord-cat}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   772
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   773
\label{ex:bordism-category}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   774
For a $k$-ball $X$, $k<n$, define $\Bord^n(X)$ to be the set of all $k$-dimensional
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   775
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   776
to $\bd X$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   777
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes (rel boundary) of such $n$-dimensional submanifolds;
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   778
we identify $W$ and $W'$ if $\bd W = \bd W'$ and there is a homeomorphism
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   779
$W \to W'$ which restricts to the identity on the boundary.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   780
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   781
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   782
%\nn{the next example might be an unnecessary distraction.  consider deleting it.}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   783
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   784
%\begin{example}[Variation on the above examples]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   785
%We could allow $F$ to have boundary and specify boundary conditions on $X\times \bd F$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   786
%for example product boundary conditions or take the union over all boundary conditions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   787
%%\nn{maybe should not emphasize this case, since it's ``better" in some sense
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   788
%%to think of these guys as affording a representation
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   789
%%of the $n{+}1$-category associated to $\bd F$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   790
%\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   791
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   792
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   793
%We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   794
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   795
\begin{example}[Chains (or space) of maps to a space]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   796
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   797
\label{ex:chains-of-maps-to-a-space}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   798
We can modify Example \ref{ex:maps-to-a-space} above to define the fundamental $A_\infty$ $n$-category $\pi^\infty_{\le n}(T)$ of a topological space $T$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   799
For a $k$-ball $X$, with $k < n$, the set $\pi^\infty_{\leq n}(T)(X)$ is just $\Maps(X \to T)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   800
Define $\pi^\infty_{\leq n}(T)(X; c)$ for an $n$-ball $X$ and $c \in \pi^\infty_{\leq n}(T)(\bdy X)$ to be the chain complex
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   801
\[
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   802
	C_*(\Maps_c(X\times F \to T)),
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   803
\]
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   804
where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   805
and $C_*$ denotes singular chains.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   806
Alternatively, if we take the $n$-morphisms to be simply $\Maps_c(X\times F \to T)$, 
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   807
we get an $A_\infty$ $n$-category enriched over spaces.
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   808
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   809
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   810
See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   811
homotopy as the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   812
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   813
\begin{example}[Blob complexes of balls (with a fiber)]
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   814
\rm
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   815
\label{ex:blob-complexes-of-balls}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   816
Fix an $n{-}k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   817
We will define an $A_\infty$ $k$-category $\cC$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   818
When $X$ is a $m$-ball, with $m<k$, define $\cC(X) = \cE(X\times F)$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   819
When $X$ is an $k$-ball,
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   820
define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   821
where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   822
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   823
445
45807ce15615 starting on a_inf_blob.tex; just realized I forgot to fetch scott's recent changes
Kevin Walker <kevin@canyon23.net>
parents: 440
diff changeset
   824
This example will be used in Theorem \ref{thm:product} below, which allows us to compute the blob complex of a product.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   825
Notice that with $F$ a point, the above example is a construction turning a topological 
456
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
   826
$n$-category $\cC$ into an $A_\infty$ $n$-category.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   827
We think of this as providing a ``free resolution" 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   828
of the topological $n$-category. 
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   829
%\nn{say something about cofibrant replacements?}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   830
In fact, there is also a trivial, but mostly uninteresting, way to do this: 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   831
we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   832
and take $\CD{B}$ to act trivially. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   833
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   834
Be careful that the ``free resolution" of the topological $n$-category $\pi_{\leq n}(T)$ is not the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   835
It's easy to see that with $n=0$, the corresponding system of fields is just 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   836
linear combinations of connected components of $T$, and the local relations are trivial.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   837
There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   838
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   839
\begin{example}[The bordism $n$-category, $A_\infty$ version]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   840
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   841
\label{ex:bordism-category-ainf}
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   842
As in Example \ref{ex:bord-cat}, for $X$ a $k$-ball, $k<n$, we define $\Bord^{n,\infty}(X)$
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   843
to be the set of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   844
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   845
to $\bd X$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   846
For an $n$-ball $X$ with boundary condition $c$ 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   847
define $\Bord^{n,\infty}(X; c)$ to be the space of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   848
submanifolds $W$ of $X\times \Real^\infty$ such that 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   849
$W$ coincides with $c$ at $\bd X \times \Real^\infty$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   850
(The topology on this space is induced by ambient isotopy rel boundary.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   851
This is homotopy equivalent to a disjoint union of copies $\mathrm{B}\!\Homeo(W')$, where
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   852
$W'$ runs though representatives of homeomorphism types of such manifolds.)
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   853
\end{example}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   854
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   855
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   856
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   857
Let $\cE\cB_n$ be the operad of smooth embeddings of $k$ (little)
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   858
copies of the standard $n$-ball $B^n$ into another (big) copy of $B^n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   859
(We require that the interiors of the little balls be disjoint, but their 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   860
boundaries are allowed to meet.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   861
Note in particular that the space for $k=1$ contains a copy of $\Diff(B^n)$, namely
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   862
the embeddings of a ``little" ball with image all of the big ball $B^n$.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   863
(But note also that this inclusion is not
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   864
necessarily a homotopy equivalence.)
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   865
The operad $\cE\cB_n$ is homotopy equivalent to the standard framed little $n$-ball operad:
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   866
by shrinking the little balls (precomposing them with dilations), 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   867
we see that both operads are homotopic to the space of $k$ framed points
401
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   868
in $B^n$.
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   869
It is easy to see that $n$-fold loop spaces $\Omega^n(T)$  have
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   870
an action of $\cE\cB_n$.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   871
%\nn{add citation for this operad if we can find one}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   872
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   873
\begin{example}[$E_n$ algebras]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   874
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   875
\label{ex:e-n-alg}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   876
Let $A$ be an $\cE\cB_n$-algebra.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   877
Note that this implies a $\Diff(B^n)$ action on $A$, 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   878
since $\cE\cB_n$ contains a copy of $\Diff(B^n)$.
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   879
We will define an $A_\infty$ $n$-category $\cC^A$.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   880
If $X$ is a ball of dimension $k<n$, define $\cC^A(X)$ to be a point.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   881
In other words, the $k$-morphisms are trivial for $k<n$.
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   882
If $X$ is an $n$-ball, we define $\cC^A(X)$ via a colimit construction.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   883
(Plain colimit, not homotopy colimit.)
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   884
Let $J$ be the category whose objects are embeddings of a disjoint union of copies of 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   885
the standard ball $B^n$ into $X$, and who morphisms are given by engulfing some of the 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   886
embedded balls into a single larger embedded ball.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   887
To each object of $J$ we associate $A^{\times m}$ (where $m$ is the number of balls), and
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   888
to each morphism of $J$ we associate a morphism coming from the $\cE\cB_n$ action on $A$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   889
Alternatively and more simply, we could define $\cC^A(X)$ to be 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   890
$\Diff(B^n\to X)\times A$ modulo the diagonal action of $\Diff(B^n)$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   891
The remaining data for the $A_\infty$ $n$-category 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   892
--- composition and $\Diff(X\to X')$ action ---
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   893
also comes from the $\cE\cB_n$ action on $A$.
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   894
%\nn{should we spell this out?}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   895
356
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   896
Conversely, one can show that a topological $A_\infty$ $n$-category $\cC$, where the $k$-morphisms
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   897
$\cC(X)$ are trivial (single point) for $k<n$, gives rise to 
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   898
an $\cE\cB_n$-algebra.
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   899
%\nn{The paper is already long; is it worth giving details here?}
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
   900
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
   901
If we apply the homotopy colimit construction of the next subsection to this example, 
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
   902
we get an instance of Lurie's topological chiral homology construction.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   903
\end{example}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   904
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   905
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   906
\subsection{From balls to manifolds}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   907
\label{ss:ncat_fields} \label{ss:ncat-coend}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   908
In this section we describe how to extend an $n$-category $\cC$ as described above 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   909
(of either the plain or $A_\infty$ variety) to an invariant of manifolds, which we denote by $\cl{\cC}$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   910
This extension is a certain colimit, and we've chosen the notation to remind you of this.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   911
Thus we show that functors $\cC_k$ satisfying the axioms above have a canonical extension 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   912
from $k$-balls to arbitrary $k$-manifolds.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   913
Recall that we've already anticipated this construction in the previous section, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   914
inductively defining $\cl{\cC}$ on $k$-spheres in terms of $\cC$ on $k$-balls, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   915
so that we can state the boundary axiom for $\cC$ on $k+1$-balls.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   916
In the case of plain $n$-categories, this construction factors into a construction of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   917
system of fields and local relations, followed by the usual TQFT definition of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   918
vector space invariant of manifolds given as Definition \ref{defn:TQFT-invariant}.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   919
For an $A_\infty$ $n$-category, $\cl{\cC}$ is defined using a homotopy colimit instead.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   920
Recall that we can take a plain $n$-category $\cC$ and pass to the ``free resolution", 
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   921
an $A_\infty$ $n$-category $\bc_*(\cC)$, by computing the blob complex of balls 
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   922
(recall Example \ref{ex:blob-complexes-of-balls} above).
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   923
We will show in Corollary \ref{cor:new-old} below that the homotopy colimit invariant 
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   924
for a manifold $M$ associated to this $A_\infty$ $n$-category is actually the 
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   925
same as the original blob complex  for $M$ with coefficients in $\cC$.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   926
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   927
We will first define the ``decomposition" poset $\cell(W)$ for any $k$-manifold $W$, for $1 \leq k \leq n$. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   928
An $n$-category $\cC$ provides a functor from this poset to the category of sets, 
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   929
and we  will define $\cl{\cC}(W)$ as a suitable colimit 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   930
(or homotopy colimit in the $A_\infty$ case) of this functor. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   931
We'll later give a more explicit description of this colimit.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   932
In the case that the $n$-category $\cC$ is enriched (e.g. associates vector spaces or chain complexes to $n$-balls with boundary data), 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   933
then the resulting colimit is also enriched, that is, the set associated to $W$ splits into subsets according to boundary data, and each of these subsets has the appropriate structure (e.g. a vector space or chain complex).
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   934
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   935
Recall (Definition \ref{defn:gluing-decomposition}) that a {\it ball decomposition} of $W$ is a 
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   936
sequence of gluings $M_0\to M_1\to\cdots\to M_m = W$ such that $M_0$ is a disjoint union of balls
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   937
$\du_a X_a$.
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   938
Abusing notation, we let $X_a$ denote both the ball (component of $M_0$) and
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   939
its image in $W$ (which is not necessarily a ball --- parts of $\bd X_a$ may have been glued together).
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   940
Define a {\it permissible decomposition} of $W$ to be a map
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   941
\[
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   942
	\coprod_a X_a \to W,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   943
\]
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   944
which can be completed to a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$.
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   945
Roughly, a permissible decomposition is like a ball decomposition where we don't care in which order the balls
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   946
are glued up to yield $W$, so long as there is some (non-pathological) way to glue them.
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   947
479
cfad13b6b1e5 some modifications to blobdef
Scott Morrison <scott@tqft.net>
parents: 476
diff changeset
   948
Given permissible decompositions $x = \{X_a\}$ and $y = \{Y_b\}$ of $W$, we say that $x$ is a refinement
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   949
of $y$, or write $x \le y$, if there is a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   950
with $\du_b Y_b = M_i$ for some $i$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   951
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   952
\begin{defn}
479
cfad13b6b1e5 some modifications to blobdef
Scott Morrison <scott@tqft.net>
parents: 476
diff changeset
   953
The poset $\cell(W)$ has objects the permissible decompositions of $W$, 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   954
and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   955
See Figure \ref{partofJfig} for an example.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   956
\end{defn}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   957
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   958
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   959
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   960
\mathfig{.63}{ncat/zz2}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   961
\end{equation*}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   962
\caption{A small part of $\cell(W)$}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   963
\label{partofJfig}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   964
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   965
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   966
An $n$-category $\cC$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   967
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   968
(possibly with additional structure if $k=n$).
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   969
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   970
and, as described above, we have a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   971
are splittable along this decomposition.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   972
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   973
\begin{defn}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   974
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   975
For a decomposition $x = \bigsqcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   976
\begin{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   977
\label{eq:psi-C}
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   978
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   979
\end{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   980
where the restrictions to the various pieces of shared boundaries amongst the cells
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   981
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   982
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   983
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   984
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   985
If $k=n$ in the above definition and we are enriching in some auxiliary category, 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   986
we need to say a bit more.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   987
We can rewrite Equation \ref{eq:psi-C} as
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   988
\begin{equation} \label{eq:psi-CC}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   989
	\psi_{\cC;W}(x) \deq \coprod_\beta \prod_a \cC(X_a; \beta) ,
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   990
\end{equation}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   991
where $\beta$ runs through labelings of the $k{-}1$-skeleton of the decomposition
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   992
(which are compatible when restricted to the $k{-}2$-skeleton), and $\cC(X_a; \beta)$
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   993
means the subset of $\cC(X_a)$ whose restriction to $\bd X_a$ agress with $\beta$.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   994
If we are enriching over $\cS$ and $k=n$, then $\cC(X_a; \beta)$ is an object in 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   995
$\cS$ and the coproduct and product in Equation \ref{eq:psi-CC} should be replaced by the approriate
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   996
operations in $\cS$ (e.g. direct sum and tensor product if $\cS$ is Vect).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   997
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   998
Finally, we construct $\cl{\cC}(W)$ as the appropriate colimit of $\psi_{\cC;W}$:
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   999
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1000
\begin{defn}[System of fields functor]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1001
\label{def:colim-fields}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1002
If $\cC$ is an $n$-category enriched in sets or vector spaces, $\cl{\cC}(W)$ is the usual colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1003
That is, for each decomposition $x$ there is a map
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1004
$\psi_{\cC;W}(x)\to \cl{\cC}(W)$, these maps are compatible with the refinement maps
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1005
above, and $\cl{\cC}(W)$ is universal with respect to these properties.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1006
\end{defn}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1007
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1008
\begin{defn}[System of fields functor, $A_\infty$ case]
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1009
When $\cC$ is an $A_\infty$ $n$-category, $\cl{\cC}(W)$ for $W$ a $k$-manifold with $k < n$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1010
is defined as above, as the colimit of $\psi_{\cC;W}$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1011
When $W$ is an $n$-manifold, the chain complex $\cl{\cC}(W)$ is the homotopy colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1012
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1013
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1014
We can specify boundary data $c \in \cl{\cC}(\bdy W)$, and define functors $\psi_{\cC;W,c}$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1015
with values the subsets of those of $\psi_{\cC;W}$ which agree with $c$ on the boundary of $W$.
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
  1016
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1017
We now give more concrete descriptions of the above colimits.
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1018
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1019
In the non-enriched case (e.g.\ $k<n$), where each $\cC(X_a; \beta)$ is just a set,
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1020
the colimit is
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1021
\[
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1022
	\cl{\cC}(W,c) = \left( \coprod_x \coprod_\beta \prod_a \cC(X_a; \beta) \right) \Bigg/ \sim ,
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1023
\]
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1024
where $x$ runs through decomposition of $W$, and $\sim$ is the obvious equivalence relation 
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1025
induced by refinement and gluing.
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1026
If $\cC$ is enriched over vector spaces and $W$ is an $n$-manifold, 
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1027
we can take
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1028
\begin{equation*}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1029
	\cl{\cC}(W,c) = \left( \bigoplus_x \bigoplus_\beta \bigotimes_a \cC(X_a; \beta) \right) \Bigg/ K,
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1030
\end{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1031
where $K$ is the vector space spanned by elements $a - g(a)$, with
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1032
$a\in \psi_{\cC;W,c}(x)$ for some decomposition $x$, and $g: \psi_{\cC;W,c}(x)
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1033
\to \psi_{\cC;W,c}(y)$ is value of $\psi_{\cC;W,c}$ on some antirefinement $x \leq y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1034
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1035
In the $A_\infty$ case, enriched over chain complexes, the concrete description of the homotopy colimit
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
  1036
is more involved.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1037
Define an $m$-sequence in $W$ to be a sequence $x_0 \le x_1 \le \dots \le x_m$ of permissible decompositions of $W$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1038
Such sequences (for all $m$) form a simplicial set in $\cell(W)$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1039
Define $\cl{\cC}(W)$ as a vector space via
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1040
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1041
	\cl{\cC}(W) = \bigoplus_{(x_i)} \psi_{\cC;W}(x_0)[m] ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1042
\]
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1043
where the sum is over all $m$ and all $m$-sequences $(x_i)$, and each summand is degree shifted by $m$. 
463
Kevin Walker <kevin@canyon23.net>
parents: 461
diff changeset
  1044
Elements of a summand indexed by an $m$-sequence will be call $m$-simplices.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1045
We endow $\cl{\cC}(W)$ with a differential which is the sum of the differential of the $\psi_{\cC;W}(x_0)$
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1046
summands plus another term using the differential of the simplicial set of $m$-sequences.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1047
More specifically, if $(a, \bar{x})$ denotes an element in the $\bar{x}$
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1048
summand of $\cl{\cC}(W)$ (with $\bar{x} = (x_0,\dots,x_k)$), define
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1049
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1050
	\bd (a, \bar{x}) = (\bd a, \bar{x}) + (-1)^{\deg{a}} (g(a), d_0(\bar{x})) + (-1)^{\deg{a}} \sum_{j=1}^k (-1)^{j} (a, d_j(\bar{x})) ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1051
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1052
where $d_j(\bar{x}) = (x_0,\dots,x_{j-1},x_{j+1},\dots,x_k)$ and $g: \psi_\cC(x_0)\to \psi_\cC(x_1)$
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1053
is the usual gluing map coming from the antirefinement $x_0 \le x_1$.
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1054
%\nn{need to say this better}
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1055
%\nn{maybe mention that there is a version that emphasizes minimal gluings (antirefinements) which
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1056
%combine only two balls at a time; for $n=1$ this version will lead to usual definition
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1057
%of $A_\infty$ category}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1058
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1059
We can think of this construction as starting with a disjoint copy of a complex for each
461
c04bb911d636 changing simplex terminology for hocolimit (no more "degree")
Kevin Walker <kevin@canyon23.net>
parents: 456
diff changeset
  1060
permissible decomposition (the 0-simplices).
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1061
Then we glue these together with mapping cylinders coming from gluing maps
461
c04bb911d636 changing simplex terminology for hocolimit (no more "degree")
Kevin Walker <kevin@canyon23.net>
parents: 456
diff changeset
  1062
(the 1-simplices).
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1063
Then we kill the extra homology we just introduced with mapping 
461
c04bb911d636 changing simplex terminology for hocolimit (no more "degree")
Kevin Walker <kevin@canyon23.net>
parents: 456
diff changeset
  1064
cylinders between the mapping cylinders (the 2-simplices), and so on.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1065
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1066
$\cl{\cC}(W)$ is functorial with respect to homeomorphisms of $k$-manifolds. Restricting the $k$-spheres, we have now proved Lemma \ref{lem:spheres}.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1067
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
  1068
It is easy to see that
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1069
there are well-defined maps $\cl{\cC}(W)\to\cl{\cC}(\bd W)$, and that these maps
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1070
comprise a natural transformation of functors.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1071
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1072
\begin{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1073
\label{lem:colim-injective}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1074
Let $W$ be a manifold of dimension less than $n$.  Then for each
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1075
decomposition $x$ of $W$ the natural map $\psi_{\cC;W}(x)\to \cl{\cC}(W)$ is injective.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1076
\end{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1077
\begin{proof}
531
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1078
$\cl{\cC}(W)$ is a colimit of a diagram of sets, and each of the arrows in the diagram is
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1079
injective.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1080
Concretely, the colimit is the disjoint union of the sets (one for each decomposition of $W$),
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1081
modulo the relation which identifies the domain of each of the injective maps
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1082
with it's image.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1083
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1084
To save ink and electrons we will simplify notation and write $\psi(x)$ for $\psi_{\cC;W}(x)$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1085
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1086
Suppose $a, \hat{a}\in \psi(x)$ have the same image in $\cl{\cC}(W)$ but $a\ne \hat{a}$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1087
Then there exist
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1088
\begin{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1089
\item decompositions $x = x_0, x_1, \ldots , x_{k-1}, x_k = x$ and $v_1,\ldots, v_k$ of $W$;
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1090
\item anti-refinements $v_i\to x_i$ and $v_i\to x_{i-1}$; and
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1091
\item elements $a_i\in \psi(x_i)$ and $b_i\in \psi(v_i)$, with $a_0 = a$ and $a_k = \hat{a}$, 
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1092
such that $b_i$ and $b_{i+1}$both map to (glue up to) $a_i$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1093
\end{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1094
In other words, we have a zig-zag of equivalences starting at $a$ and ending at $\hat{a}$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1095
The idea of the proof is to produce a similar zig-zag where everything antirefines to the same
535
07b79f81c956 numbering axioms and module axioms as 7.x
Scott Morrison <scott@tqft.net>
parents: 531
diff changeset
  1096
disjoint union of balls, and then invoke Axiom \ref{nca-assoc} which ensures associativity.
531
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1097
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1098
Let $z$ be a decomposition of $W$ which is in general position with respect to all of the 
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1099
$x_i$'s and $v_i$'s.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1100
There there decompositions $x'_i$ and $v'_i$ (for all $i$) such that
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1101
\begin{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1102
\item $x'_i$ antirefines to $x_i$ and $z$;
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1103
\item $v'_i$ antirefines to $x'_i$, $x'_{i-1}$ and $v_i$;
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1104
\item $b_i$ is the image of some $b'_i\in \psi(v'_i)$; and
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1105
\item $a_i$ is the image of some $a'_i\in \psi(x'_i)$, which in turn is the image
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1106
of $b'_i$ and $b'_{i+1}$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1107
\end{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1108
Now consider the diagrams
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1109
\[ \xymatrix{
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1110
	& \psi(x'_{i-1}) \ar[rd] & \\
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1111
	\psi(v'_i) \ar[ru] \ar[rd] & & \psi(z) \\
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1112
	& \psi(x'_i) \ar[ru] &
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1113
} \]
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1114
The associativity axiom applied to this diagram implies that $a'_{i-1}$ and $a'_i$
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1115
map to the same element $c\in \psi(z)$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1116
Therefore $a'_0$ and $a'_k$ both map to $c$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1117
But $a'_0$ and $a'_k$ are both elements of $\psi(x'_0)$ (because $x'_k = x'_0$).
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1118
So by the injectivity clause of the composition axiom, we must have that $a'_0 = a'_k$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1119
But this implies that $a = a_0 = a_k = \hat{a}$, contrary to our assumption that $a\ne \hat{a}$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1120
\end{proof}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1121
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1122
\nn{need to finish explaining why we have a system of fields;
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1123
define $k$-cat $\cC(\cdot\times W)$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1124
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1125
\subsection{Modules}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  1126
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1127
Next we define plain and $A_\infty$ $n$-category modules.
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1128
The definition will be very similar to that of $n$-categories,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1129
but with $k$-balls replaced by {\it marked $k$-balls,} defined below.
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1130
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1131
Our motivating example comes from an $(m{-}n{+}1)$-dimensional manifold $W$ with boundary
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1132
in the context of an $m{+}1$-dimensional TQFT.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1133
Such a $W$ gives rise to a module for the $n$-category associated to $\bd W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1134
This will be explained in more detail as we present the axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1135
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1136
Throughout, we fix an $n$-category $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1137
For all but one axiom, it doesn't matter whether $\cC$ is a topological $n$-category or an $A_\infty$ $n$-category.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1138
We state the final axiom, regarding actions of homeomorphisms, differently in the two cases.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1139
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1140
Define a {\it marked $k$-ball} to be a pair $(B, N)$ homeomorphic to the pair
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1141
$$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1142
We call $B$ the ball and $N$ the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1143
A homeomorphism between marked $k$-balls is a homeomorphism of balls which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1144
restricts to a homeomorphism of markings.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1145
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1146
\begin{module-axiom}[Module morphisms]
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1147
{For each $0 \le k \le n$, we have a functor $\cM_k$ from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1148
the category of marked $k$-balls and 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1149
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1150
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1151
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1152
(As with $n$-categories, we will usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1153
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1154
For example, let $\cD$ be the TQFT which assigns to a $k$-manifold $N$ the set 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1155
of maps from $N$ to $T$ (for $k\le m$), modulo homotopy (and possibly linearized) if $k=m$.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1156
Let $W$ be an $(m{-}n{+}1)$-dimensional manifold with boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1157
Let $\cC$ be the $n$-category with $\cC(X) \deq \cD(X\times \bd W)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1158
Let $\cM(B, N) \deq \cD((B\times \bd W)\cup (N\times W))$
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1159
(see Example \ref{ex:maps-with-fiber}).
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1160
(The union is along $N\times \bd W$.)
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1161
%(If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1162
%the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1163
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1164
\begin{figure}[!ht]
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1165
$$\mathfig{.55}{ncat/boundary-collar}$$
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1166
\caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1167
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1168
Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1169
Call such a thing a {marked $k{-}1$-hemisphere}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1170
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1171
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1172
\label{lem:hemispheres}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1173
{For each $0 \le k \le n-1$, we have a functor $\cl\cM_k$ from 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1174
the category of marked $k$-hemispheres and 
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1175
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1176
\end{lem}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1177
The proof is exactly analogous to that of Lemma \ref{lem:spheres}, and we omit the details.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1178
We use the same type of colimit construction.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1179
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1180
In our example, $\cl\cM(H) = \cD(H\times\bd W \cup \bd H\times W)$.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1181
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1182
\begin{module-axiom}[Module boundaries (maps)]
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1183
{For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cl\cM(\bd M)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1184
These maps, for various $M$, comprise a natural transformation of functors.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1185
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1186
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1187
Given $c\in\cl\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1188
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1189
If the $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1190
then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1191
and $c\in \cC(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1192
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1193
\begin{lem}[Boundary from domain and range]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1194
{Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k{-}1$-hemisphere ($1\le k\le n$),
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1195
$M_i$ is a marked $k{-}1$-ball, and $E = M_1\cap M_2$ is a marked $k{-}2$-hemisphere.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1196
Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1197
two maps $\bd: \cM(M_i)\to \cl\cM(E)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1198
Then we have an injective map
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1199
\[
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1200
	\gl_E : \cM(M_1) \times_{\cl\cM(E)} \cM(M_2) \hookrightarrow \cl\cM(H)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1201
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1202
which is natural with respect to the actions of homeomorphisms.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1203
\end{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1204
Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1205
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1206
Let $\cl\cM(H)_E$ denote the image of $\gl_E$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1207
We will refer to elements of $\cl\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". 
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1208
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1209
\begin{lem}[Module to category restrictions]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1210
{For each marked $k$-hemisphere $H$ there is a restriction map
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1211
$\cl\cM(H)\to \cC(H)$.  
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1212
($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1213
These maps comprise a natural transformation of functors.}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1214
\end{lem}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1215
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1216
Note that combining the various boundary and restriction maps above
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1217
(for both modules and $n$-categories)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1218
we have for each marked $k$-ball $(B, N)$ and each $k{-}1$-ball $Y\sub \bd B \setmin N$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1219
a natural map from a subset of $\cM(B, N)$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1220
The subset is the subset of morphisms which are appropriately splittable (transverse to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1221
cutting submanifolds).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1222
This fact will be used below.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1223
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1224
In our example, the various restriction and gluing maps above come from
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1225
restricting and gluing maps into $T$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1226
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1227
We require two sorts of composition (gluing) for modules, corresponding to two ways
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1228
of splitting a marked $k$-ball into two (marked or plain) $k$-balls.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1229
(See Figure \ref{zzz3}.)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1230
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1231
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1232
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1233
\mathfig{.4}{ncat/zz3}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1234
\end{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1235
\caption{Module composition (top); $n$-category action (bottom).}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1236
\label{zzz3}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1237
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1238
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1239
First, we can compose two module morphisms to get another module morphism.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1240
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1241
\begin{module-axiom}[Module composition]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1242
{Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1243
and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1244
Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1245
Note that each of $M$, $M_1$ and $M_2$ has its boundary split into two marked $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1246
We have restriction (domain or range) maps $\cM(M_i)_E \to \cM(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1247
Let $\cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1248
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1249
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1250
	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1251
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1252
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1253
to the intersection of the boundaries of $M$ and $M_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1254
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1255
(For $k=n$, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1256
\end{module-axiom}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1257
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1258
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1259
Second, we can compose an $n$-category morphism with a module morphism to get another
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1260
module morphism.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1261
We'll call this the action map to distinguish it from the other kind of composition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1262
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1263
\begin{module-axiom}[$n$-category action]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1264
{Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1265
$X$ is a plain $k$-ball,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1266
and $Y = X\cap M'$ is a $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1267
Let $E = \bd Y$, which is a $k{-}2$-sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1268
We have restriction maps $\cM(M')_E \to \cC(Y)$ and $\cC(X)_E\to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1269
Let $\cC(X)_E \times_{\cC(Y)} \cM(M')_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1270
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1271
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1272
	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1273
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1274
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1275
to the intersection of the boundaries of $X$ and $M'$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1276
If $k < n$ we require that $\gl_Y$ is injective.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1277
(For $k=n$, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1278
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1279
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1280
\begin{module-axiom}[Strict associativity]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1281
The composition and action maps above are strictly associative.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
  1282
Given any decomposition of a large marked ball into smaller marked and unmarked balls
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
  1283
any sequence of pairwise gluings yields (via composition and action maps) the same result.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1284
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1285
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1286
Note that the above associativity axiom applies to mixtures of module composition,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1287
action maps and $n$-category composition.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1288
See Figure \ref{zzz1b}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1289
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1290
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1291
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1292
\mathfig{0.49}{ncat/zz0} \mathfig{0.49}{ncat/zz1}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1293
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1294
\caption{Two examples of mixed associativity}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1295
\label{zzz1b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1296
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1297
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1298
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1299
The above three axioms are equivalent to the following axiom,
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1300
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1301
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1302
\xxpar{Module multi-composition:}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1303
{Given any splitting 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1304
\[
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1305
	X_1 \sqcup\cdots\sqcup X_p \sqcup M_1\sqcup\cdots\sqcup M_q \to M
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1306
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1307
of a marked $k$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1308
into small (marked and plain) $k$-balls $M_i$ and $X_j$, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1309
map from an appropriate subset (like a fibered product) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1310
of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1311
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1312
	\cC(X_1)\times\cdots\times\cC(X_p) \times \cM(M_1)\times\cdots\times\cM(M_q) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1313
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1314
to $\cM(M)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1315
and these various multifold composition maps satisfy an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1316
operad-type strict associativity condition.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1317
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1318
The above operad-like structure is analogous to the swiss cheese operad
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1319
\cite{MR1718089}.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1320
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1321
\medskip
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1322
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1323
We can define marked pinched products $\pi:E\to M$ of marked balls analogously to the 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1324
plain ball case.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1325
Note that a marked pinched product can be decomposed into either
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1326
two marked pinched products or a plain pinched product and a marked pinched product.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1327
\nn{should give figure}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1328
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1329
\begin{module-axiom}[Product (identity) morphisms]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1330
For each pinched product $\pi:E\to M$, with $M$ a marked $k$-ball and $E$ a marked
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1331
$k{+}m$-ball ($m\ge 1$),
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1332
there is a map $\pi^*:\cM(M)\to \cM(E)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1333
These maps must satisfy the following conditions.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1334
\begin{enumerate}
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1335
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1336
If $\pi:E\to M$ and $\pi':E'\to M'$ are marked pinched products, and
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1337
if $f:M\to M'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1338
\[ \xymatrix{
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1339
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1340
	M \ar[r]^{f} & M'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1341
} \]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1342
commutes, then we have 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1343
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1344
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1345
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1346
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1347
Product morphisms are compatible with module composition and module action.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1348
Let $\pi:E\to M$, $\pi_1:E_1\to M_1$, and $\pi_2:E_2\to M_2$ 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1349
be pinched products with $E = E_1\cup E_2$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1350
Let $a\in \cM(M)$, and let $a_i$ denote the restriction of $a$ to $M_i\sub M$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1351
Then 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1352
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1353
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1354
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1355
Similarly, if $\rho:D\to X$ is a pinched product of plain balls and
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1356
$E = D\cup E_1$, then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1357
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1358
	\pi^*(a) = \rho^*(a')\bullet \pi_1^*(a_1),
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1359
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1360
where $a'$ is the restriction of $a$ to $D$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1361
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1362
Product morphisms are associative.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1363
If $\pi:E\to M$ and $\rho:D\to E$ are marked pinched products then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1364
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1365
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1366
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1367
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1368
Product morphisms are compatible with restriction.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1369
If we have a commutative diagram
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1370
\[ \xymatrix{
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1371
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1372
	Y \ar@{^(->}[r] & M
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1373
} \]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1374
such that $\rho$ and $\pi$ are pinched products, then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1375
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1376
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1377
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1378
($Y$ could be either a marked or plain ball.)
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1379
\end{enumerate}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1380
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1381
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1382
As in the $n$-category definition, once we have product morphisms we can define
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1383
collar maps $\cM(M)\to \cM(M)$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1384
Note that there are two cases:
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1385
the collar could intersect the marking of the marked ball $M$, in which case
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1386
we use a product on a morphism of $\cM$; or the collar could be disjoint from the marking,
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1387
in which case we use a product on a morphism of $\cC$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1388
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1389
In our example, elements $a$ of $\cM(M)$ maps to $T$, and $\pi^*(a)$ is the pullback of
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1390
$a$ along a map associated to $\pi$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1391
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1392
\medskip
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1393
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1394
There are two alternatives for the next axiom, according whether we are defining
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1395
modules for plain $n$-categories or $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1396
In the plain case we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1397
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1398
\begin{module-axiom}[\textup{\textbf{[plain version]}} Extended isotopy invariance in dimension $n$]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1399
{Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1400
to the identity on $\bd M$ and is isotopic (rel boundary) to the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1401
Then $f$ acts trivially on $\cM(M)$.}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1402
In addition, collar maps act trivially on $\cM(M)$.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1403
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1404
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1405
We emphasize that the $\bd M$ above means boundary in the marked $k$-ball sense.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1406
In other words, if $M = (B, N)$ then we require only that isotopies are fixed 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1407
on $\bd B \setmin N$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1408
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1409
For $A_\infty$ modules we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1410
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1411
\addtocounter{module-axiom}{-1}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1412
\begin{module-axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act]
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1413
For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1414
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1415
	C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1416
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1417
Here $C_*$ means singular chains and $\Homeo_\bd(M)$ is the space of homeomorphisms of $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1418
which fix $\bd M$.
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
  1419
These action maps are required to be associative up to homotopy, as in Theorem \ref{thm:CH-associativity}, 
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1420
and also compatible with composition (gluing) in the sense that
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
  1421
a diagram like the one in Theorem \ref{thm:CH} commutes.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1422
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1423
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1424
As with the $n$-category version of the above axiom, we should also have families of collar maps act.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1425
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1426
\medskip
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1427
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1428
Note that the above axioms imply that an $n$-category module has the structure
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1429
of an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1430
More specifically, let $J$ be a marked 1-ball, and define $\cE(X)\deq \cM(X\times J)$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
  1431
where $X$ is a $k$-ball and in the product $X\times J$ we pinch 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1432
above the non-marked boundary component of $J$.
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1433
(More specifically, we collapse $X\times P$ to a single point, where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1434
$P$ is the non-marked boundary component of $J$.)
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1435
Then $\cE$ has the structure of an $n{-}1$-category.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1436
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1437
All marked $k$-balls are homeomorphic, unless $k = 1$ and our manifolds
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1438
are oriented or Spin (but not unoriented or $\text{Pin}_\pm$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1439
In this case ($k=1$ and oriented or Spin), there are two types
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1440
of marked 1-balls, call them left-marked and right-marked,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1441
and hence there are two types of modules, call them right modules and left modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1442
In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1443
there is no left/right module distinction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1444
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1445
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1446
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1447
We now give some examples of modules over topological and $A_\infty$ $n$-categories.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1448
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1449
\begin{example}[Examples from TQFTs]
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1450
\rm
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1451
Continuing Example \ref{ex:ncats-from-tqfts}, with $\cF$ a TQFT, $W$ an $n{-}j$-manifold,
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1452
and $\cF(W)$ the $j$-category associated to $W$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1453
Let $Y$ be an $(n{-}j{+}1)$-manifold with $\bd Y = W$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1454
Define a $\cF(W)$ module $\cF(Y)$ as follows.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1455
If $M = (B, N)$ is a marked $k$-ball with $k<j$ let 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1456
$\cF(Y)(M)\deq \cF((B\times W) \cup (N\times Y))$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1457
If $M = (B, N)$ is a marked $j$-ball and $c\in \cl{\cF(Y)}(\bd M)$ let
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1458
$\cF(Y)(M)\deq A_\cF((B\times W) \cup (N\times Y); c)$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1459
\end{example}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1460
448
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1461
\begin{example}[Examples from the blob complex] \label{bc-module-example}
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1462
\rm
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1463
In the previous example, we can instead define
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1464
$\cF(Y)(M)\deq \bc_*((B\times W) \cup (N\times Y), c; \cF)$ (when $\dim(M) = n$)
448
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1465
and get a module for the $A_\infty$ $n$-category associated to $\cF$ as in 
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1466
Example \ref{ex:blob-complexes-of-balls}.
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1467
\end{example}
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1468
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1469
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1470
\begin{example}
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1471
\rm
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1472
Suppose $S$ is a topological space, with a subspace $T$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1473
We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1474
for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1475
$(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1476
such maps modulo homotopies fixed on $\bdy B \setminus N$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1477
This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
  1478
\end{example}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1479
Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1480
\ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1481
Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1482
324
a20e2318cbb0 rewrite proof from gluing thm
Kevin Walker <kevin@canyon23.net>
parents: 319
diff changeset
  1483
\subsection{Modules as boundary labels (colimits for decorated manifolds)}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1484
\label{moddecss}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1485
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1486
Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1487
Let $W$ be a $k$-manifold ($k\le n$),
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1488
let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1489
and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1490
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1491
We will define a set $\cC(W, \cN)$ using a colimit construction very similar to 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1492
the one appearing in \S \ref{ss:ncat_fields} above.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1493
(If $k = n$ and our $n$-categories are enriched, then
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1494
$\cC(W, \cN)$ will have additional structure; see below.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1495
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1496
Define a permissible decomposition of $W$ to be a map
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1497
\[
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1498
	\left(\bigsqcup_a X_a\right) \sqcup \left(\bigsqcup_{i,b} M_{ib}\right)  \to W,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1499
\]
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1500
where each $X_a$ is a plain $k$-ball disjoint, in $W$, from $\cup Y_i$, and
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1501
each $M_{ib}$ is a marked $k$-ball intersecting $Y_i$  (once mapped into $W$),
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1502
with $M_{ib}\cap Y_i$ being the marking, which extends to a ball decomposition in the sense of Definition \ref{defn:gluing-decomposition}.
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1503
(See Figure \ref{mblabel}.)
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1504
\begin{figure}[t]
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1505
\begin{equation*}
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1506
\mathfig{.4}{ncat/mblabel}
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1507
\end{equation*}
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1508
\caption{A permissible decomposition of a manifold
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1509
whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1510
Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1511
\end{figure}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1512
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1513
of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1514
This defines a partial ordering $\cell(W)$, which we will think of as a category.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1515
(The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1516
morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1517
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1518
The collection of modules $\cN$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1519
a functor $\psi_\cN$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1520
(possibly with additional structure if $k=n$).
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1521
For a decomposition $x = (X_a, M_{ib})$ in $\cell(W)$, define $\psi_\cN(x)$ to be the subset
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1522
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1523
	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1524
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1525
such that the restrictions to the various pieces of shared boundaries amongst the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1526
$X_a$ and $M_{ib}$ all agree.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1527
(That is, the fibered product over the boundary restriction maps.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1528
If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1529
via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1530
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1531
We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1532
(As in \S\ref{ss:ncat-coend}, if $k=n$ we take a colimit in whatever
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1533
category we are enriching over, and if additionally we are in the $A_\infty$ case, 
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1534
then we use a homotopy colimit.)
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1535
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1536
\medskip
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1537
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1538
If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1539
$\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1540
$D\times Y_i \sub \bd(D\times W)$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1541
It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1542
has the structure of an $n{-}k$-category.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1543
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1544
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1545
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1546
We will use a simple special case of the above 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1547
construction to define tensor products 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1548
of modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1549
Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1550
(If $k=1$ and our manifolds are oriented, then one should be 
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1551
a left module and the other a right module.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1552
Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1553
Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1554
$n{-}1$-category associated as above to $J$ with its boundary labeled by $\cM_1$ and $\cM_2$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1555
This of course depends (functorially)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1556
on the choice of 1-ball $J$.
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1557
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1558
We will define a more general self tensor product (categorified coend) below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1559
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1560
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
  1561
\subsection{Morphisms of \texorpdfstring{$A_\infty$}{A-infinity} 1-category modules}
288
6c1b3c954c7e more deligne.tex
Kevin Walker <kevin@canyon23.net>
parents: 286
diff changeset
  1562
\label{ss:module-morphisms}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1563
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1564
In order to state and prove our version of the higher dimensional Deligne conjecture
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
  1565
(\S\ref{sec:deligne}),
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1566
we need to define morphisms of $A_\infty$ $1$-category modules and establish
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1567
some of their elementary properties.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1568
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1569
To motivate the definitions which follow, consider algebras $A$ and $B$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1570
right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1571
\begin{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1572
	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1573
	f &\mapsto& [x \mapsto f(x\ot -)] \\
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
  1574
	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1575
\end{eqnarray*}
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1576
If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1577
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1578
	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1579
\]
476
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1580
We would like to have the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1581
and modules $\cM_\cC$ and $_\cC\cN$,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1582
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1583
	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1584
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1585
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1586
In the next few paragraphs we define the objects appearing in the above equation:
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1587
$\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1588
$\hom_\cC$.
476
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1589
(Actually, we give only an incomplete definition of $(_\cC\cN)^*$, but since we are only trying to motivate the 
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1590
definition of $\hom_\cC$, this will suffice for our purposes.)
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1591
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1592
\def\olD{{\overline D}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1593
\def\cbar{{\bar c}}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1594
In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1595
for general $n$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1596
For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1597
and their gluings (antirefinements).
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1598
(This tensor product depends functorially on the choice of $J$.)
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1599
To a subdivision $D$
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1600
\[
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1601
	J = I_1\cup \cdots\cup I_p
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1602
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1603
we associate the chain complex
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1604
\[
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1605
	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1606
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1607
To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1608
module actions of $\cC$ on $\cM$ and $\cN$.
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1609
The underlying graded vector space of the homotopy colimit is
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1610
\[
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1611
	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1612
\]
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1613
where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1614
runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1615
We will denote an element of the summand indexed by $\olD$ by
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1616
$\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1617
The boundary map is given by
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1618
\begin{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1619
	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1620
	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1621
	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1622
\end{align*}
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1623
where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1624
boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1625
and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1626
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1627
$(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1628
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1629
	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1630
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1631
where $(\psi(D_0)[l])^*$ denotes the linear dual.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1632
The boundary is given by
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1633
\begin{align}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1634
\label{eq:tensor-product-boundary}
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1635
	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1636
						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1637
			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1638
\end{align}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1639
476
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1640
Next we partially define the dual module $(_\cC\cN)^*$.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1641
This will depend on a choice of interval $J$, just as the tensor product did.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1642
Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1643
to chain complexes.
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1644
Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1645
\[
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1646
	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1647
\]
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1648
where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1649
to the right-marked interval $J\setmin K$.
476
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1650
We define the action map
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1651
\[
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1652
	(_\cC\cN)^*(K) \ot \cC(I) \to (_\cC\cN)^*(K\cup I)
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1653
\]
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1654
to be the (partial) adjoint of the map
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1655
\[
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1656
	\cC(I)\ot {_\cC\cN}(J\setmin (K\cup I)) \to  {_\cC\cN}(J\setmin K) .
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1657
\]
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1658
This falls short of fully defining the module $(_\cC\cN)^*$ (in particular,
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1659
we have no action of homeomorphisms of left-marked intervals), but it will be enough to motivate
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1660
the definition of $\hom_\cC$ below.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1661
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1662
Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1663
as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1664
Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1665
Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1666
Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1667
Then for each such $\olD$ we have a degree $l$ map
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1668
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1669
	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1670
	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1671
\end{eqnarray*}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1672
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1673
We are almost ready to give the definition of morphisms between arbitrary modules
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1674
$\cX_\cC$ and $\cY_\cC$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1675
Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1676
To fix this, we define subdivisions as antirefinements of left-marked intervals.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1677
Subdivisions are just the obvious thing, but antirefinements are defined to mimic
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1678
the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1679
omitted.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1680
More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1681
gluing subintervals together and/or omitting some of the rightmost subintervals.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1682
(See Figure \ref{fig:lmar}.)
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1683
\begin{figure}[t] \centering
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1684
\definecolor{arcolor}{rgb}{.75,.4,.1}
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1685
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1686
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1687
\draw (0,0) -- (2,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1688
\draw (1,0.1) -- (1,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1689
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1690
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1691
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1692
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1693
\draw (0,1) -- (2,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1694
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1695
\qquad
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1696
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1697
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1698
\draw (0,0) -- (2,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1699
\draw (1,0.1) -- (1,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1700
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1701
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1702
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1703
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1704
\draw (0,1) -- (1,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1705
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1706
\qquad
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1707
\begin{tikzpicture}[line width=1pt]
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1708
\fill (0,0) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1709
\draw (0,0) -- (3,0);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1710
\foreach \x in {0.5, 1.0, 1.25, 1.5, 2.0, 2.5} {
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1711
	\draw (\x,0.1) -- (\x,-0.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1712
}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1713
381
84bcc5fdf8c2 experiment with tikz colors
Kevin Walker <kevin@canyon23.net>
parents: 367
diff changeset
  1714
\draw [->, arcolor] (1,0.25) -- (1,0.75);
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1715
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1716
\fill (0,1) circle (.1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1717
\draw (0,1) -- (2,1);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1718
\foreach \x in {1.0, 1.5} {
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1719
	\draw (\x,1.1) -- (\x,0.9);
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1720
}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1721
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1722
\end{tikzpicture}
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1723
\caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure}
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1724
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1725
Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1726
The underlying vector space is 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1727
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1728
	\prod_l \prod_{\olD} \hom[l]\left(
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1729
				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1730
							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1731
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1732
where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1733
(but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1734
$\hom[l](- \to -)$ means graded linear maps of degree $l$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1735
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1736
\nn{small issue (pun intended): 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1737
the above is a vector space only if the class of subdivisions is a set, e.g. only if
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1738
all of our left-marked intervals are contained in some universal interval (like $J$ above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1739
perhaps we should give another version of the definition in terms of natural transformations of functors.}
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1740
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1741
Abusing notation slightly, we will denote elements of the above space by $g$, with
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1742
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1743
	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1744
\]
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1745
For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1746
where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1747
$\cbar''$ corresponds to the subintervals
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1748
which are dropped off the right side.
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1749
(If no such subintervals are dropped, then $\cbar''$ is empty.)
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1750
Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1751
we have
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1752
\begin{eqnarray*}
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1753
	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1754
	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl''(g((\bd_0\olD)\ot \gl'(x\ot\cbar'))\ot\cbar'') .
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1755
\end{eqnarray*}
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
  1756
\nn{put in signs, rearrange terms to match order in previous formulas}
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1757
Here $\gl''$ denotes the module action in $\cY_\cC$
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1758
and $\gl'$ denotes the module action in $\cX_\cC$.
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1759
This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
260
971234b03c4a blah blah
Kevin Walker <kevin@canyon23.net>
parents: 259
diff changeset
  1760
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1761
Note that if $\bd g = 0$, then each 
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1762
\[
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1763
	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1764
\]
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1765
constitutes a null homotopy of
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1766
$g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1767
should be interpreted as above).
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1768
410
Kevin Walker <kevin@canyon23.net>
parents: 402
diff changeset
  1769
Define a {\it strong morphism} 
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1770
of modules to be a collection of {\it chain} maps
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1771
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1772
	h_K : \cX(K)\to \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1773
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1774
for each left-marked interval $K$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1775
These are required to commute with gluing;
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1776
for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes:
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1777
\[ \xymatrix{
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1778
	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_1}\ot \id} 
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1779
							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1780
								\ar[d]^{\gl} \\
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1781
	\cX(K) \ar[r]^{h_{K}} & \cY(K)
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1782
} \]
410
Kevin Walker <kevin@canyon23.net>
parents: 402
diff changeset
  1783
Given such an $h$ we can construct a morphism $g$, with $\bd g = 0$, as follows.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1784
Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1785
If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1786
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1787
	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1788
\]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1789
Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1790
If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1791
If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1792
that each $h_K$ is a chain map.
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1793
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1794
We can think of a general closed element $g\in \hom_\cC(\cX_\cC \to \cY_\cC)$
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1795
as a collection of chain maps which commute with the module action (gluing) up to coherent homotopy.
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1796
\nn{ideally should give explicit examples of this in low degrees, 
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1797
but skip that for now.}
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1798
\nn{should also say something about composition of morphisms; well-defined up to homotopy, or maybe
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1799
should make some arbitrary choice}
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1800
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1801
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1802
Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1803
\[
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1804
	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1805
\]
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1806
\nn{...}
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1807
More generally, we have a chain map
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1808
\[
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1809
	\hom_\cC(\cX_\cC \to \cY_\cC) \ot \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1810
\]
330
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1811
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1812
\nn{not sure whether to do low degree examples or try to state the general case; ideally both,
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1813
but maybe just low degrees for now.}
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1814
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1815
8dad3dc7023b module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 328
diff changeset
  1816
\nn{...}
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1817
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1818
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1819
\medskip
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1820
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1821
476
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1822
%\nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1823
%of the $\cC$ functors which commute with gluing only up to higher morphisms?
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1824
%perhaps worth having both definitions available.
4d0ca2fc4f2b dual module (non-)definition; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 475
diff changeset
  1825
%certainly the simple kind (strictly commute with gluing) arise in nature.}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1826
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1827
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1828
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1829
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
  1830
\subsection{The \texorpdfstring{$n{+}1$}{n+1}-category of sphere modules}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 211
diff changeset
  1831
\label{ssec:spherecat}
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1832
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1833
In this subsection we define $n{+}1$-categories $\cS$ of ``sphere modules" 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1834
whose objects are $n$-categories.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1835
With future applications in mind, we treat simultaneously the big category
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1836
of all $n$-categories and all sphere modules and also subcategories thereof.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1837
When $n=1$ this is closely related to familiar $2$-categories consisting of 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1838
algebras, bimodules and intertwiners (or a subcategory of that).
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1839
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1840
While it is appropriate to call an $S^0$ module a bimodule,
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1841
this is much less true for higher dimensional spheres, 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1842
so we prefer the term ``sphere module" for the general case.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1843
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1844
%The results of this subsection are not needed for the rest of the paper,
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1845
%so we will skimp on details in a couple of places. We have included this mostly 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1846
%for the sake of comparing our notion of a topological $n$-category to other definitions.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1847
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1848
For simplicity, we will assume that $n$-categories are enriched over $\c$-vector spaces.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1849
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1850
The $0$- through $n$-dimensional parts of $\cS$ are various sorts of modules, and we describe
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1851
these first.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1852
The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1853
of  $1$-category modules associated to decorated $n$-balls.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1854
We will see below that in order for these $n{+}1$-morphisms to satisfy all of
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1855
the axioms of an $n{+}1$-category (in particular, duality requirements), we will have to assume
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1856
that our $n$-categories and modules have non-degenerate inner products.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1857
(In other words, we need to assume some extra duality on the $n$-categories and modules.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1858
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1859
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1860
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1861
Our first task is to define an $n$-category $m$-sphere module, for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1862
These will be defined in terms of certain classes of marked balls, very similarly
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1863
to the definition of $n$-category modules above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1864
(This, in turn, is very similar to our definition of $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1865
Because of this similarity, we only sketch the definitions below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1866
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1867
We start with $0$-sphere modules, which also could reasonably be called (categorified) bimodules.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1868
(For $n=1$ they are precisely bimodules in the usual, uncategorified sense.)
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1869
We prefer the more awkward term ``0-sphere module" to emphasize the analogy
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1870
with the higher sphere modules defined below.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1871
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1872
Define a $0$-marked $k$-ball, $1\le k \le n$, to be a pair  $(X, M)$ homeomorphic to the standard
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1873
$(B^k, B^{k-1})$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1874
See Figure \ref{feb21a}.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1875
Another way to say this is that $(X, M)$ is homeomorphic to $B^{k-1}\times([-1,1], \{0\})$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1876
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1877
\begin{figure}[t]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1878
$$\tikz[baseline,line width=2pt]{\draw[blue] (-2,0)--(2,0); \fill[red] (0,0) circle (0.1);} \qquad \qquad \tikz[baseline,line width=2pt]{\draw[blue][fill=blue!30!white] (0,0) circle (2 and 1); \draw[red] (0,1)--(0,-1);}$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1879
\caption{0-marked 1-ball and 0-marked 2-ball}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1880
\label{feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1881
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1882
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1883
The $0$-marked balls can be cut into smaller balls in various ways.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1884
We only consider those decompositions in which the smaller balls are either
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1885
$0$-marked (i.e. intersect the $0$-marking of the large ball in a disc) 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1886
or plain (don't intersect the $0$-marking of the large ball).
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1887
We can also take the boundary of a $0$-marked ball, which is $0$-marked sphere.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1888
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1889
Fix $n$-categories $\cA$ and $\cB$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1890
These will label the two halves of a $0$-marked $k$-ball.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1891
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1892
An $n$-category $0$-sphere module $\cM$ over the $n$-categories $\cA$ and $\cB$ is a collection of functors $\cM_k$ from the category
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1893
of $0$-marked $k$-balls, $1\le k \le n$,
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1894
(with the two halves labeled by $\cA$ and $\cB$) to the category of sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1895
If $k=n$ these sets should be enriched to the extent $\cA$ and $\cB$ are.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1896
Given a decomposition of a $0$-marked $k$-ball $X$ into smaller balls $X_i$, we have
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1897
morphism sets $\cA_k(X_i)$ (if $X_i$ lies on the $\cA$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1898
or $\cB_k(X_i)$ (if $X_i$ lies on the $\cB$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1899
or $\cM_k(X_i)$ (if $X_i$ intersects the marking and is therefore a smaller 0-marked ball).
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
  1900
Corresponding to this decomposition we have a composition (or ``gluing") map
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1901
from the product (fibered over the boundary data) of these various sets into $\cM_k(X)$.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1902
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1903
\medskip
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1904
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1905
Part of the structure of an $n$-category 0-sphere module $\cM$  is captured by saying it is
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1906
a collection $\cD^{ab}$ of $n{-}1$-categories, indexed by pairs $(a, b)$ of objects (0-morphisms)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1907
of $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1908
Let $J$ be some standard 0-marked 1-ball (i.e.\ an interval with a marked point in its interior).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1909
Given a $j$-ball $X$, $0\le j\le n-1$, we define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1910
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1911
	\cD(X) \deq \cM(X\times J) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1912
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1913
The product is pinched over the boundary of $J$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1914
The set $\cD$ breaks into ``blocks" according to the restrictions to the pinched points of $X\times J$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1915
(see Figure \ref{feb21b}).
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1916
These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$.
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1917
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1918
\begin{figure}[t] \centering
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1919
\begin{tikzpicture}[blue,line width=2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1920
\draw (0,1) -- (0,-1) node[below] {$X$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1921
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1922
\draw (2,0) -- (4,0) node[below] {$J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1923
\fill[red] (3,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1924
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1925
\draw[fill=blue!30!white] (6,0) node(a) {} arc (135:90:4) node(top) {} arc (90:45:4) node(b) {} arc (-45:-90:4) node(bottom) {} arc(-90:-135:4);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1926
\draw[red] (top.center) -- (bottom.center);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1927
\fill (a) circle (0.1) node[left] {\color{green!50!brown} $a$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1928
\fill (b) circle (0.1) node[right] {\color{green!50!brown} $b$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1929
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1930
\path (bottom) node[below]{$X \times J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1931
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1932
\end{tikzpicture}
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1933
\caption{The pinched product $X\times J$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1934
\label{feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1935
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1936
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1937
More generally, consider an interval with interior marked points, and with the complements
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1938
of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1939
by $\cA_i$-$\cA_{i+1}$ 0-sphere modules $\cM_i$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1940
(See Figure \ref{feb21c}.)
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
  1941
To this data we can apply the coend construction as in \S\ref{moddecss} above
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1942
to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1943
This amounts to a definition of taking tensor products of $0$-sphere modules over $n$-categories.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1944
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1945
\begin{figure}[t] \centering
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1946
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1947
\draw[blue] (0,0) -- (6,0);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1948
\foreach \x/\n in {0.5/0,1.5/1,3/2,4.5/3,5.5/4} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1949
	\path (\x,0)  node[below] {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1950
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1951
\foreach \x/\n in {1/0,2/1,4/2,5/3} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1952
	\fill[red] (\x,0) circle (0.1) node[above] {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1953
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1954
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1955
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1956
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1957
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1958
\draw[blue] (0,0) circle (2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1959
\foreach \q/\n in {-45/0,90/1,180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1960
	\path (\q:2.4)  node {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1961
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1962
\foreach \q/\n in {60/0,120/1,-120/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1963
	\fill[red] (\q:2) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1964
	\path (\q:2.4) node {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1965
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1966
\end{tikzpicture}
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1967
\caption{Marked and labeled 1-manifolds}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1968
\label{feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1969
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1970
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1971
We could also similarly mark and label a circle, obtaining an $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1972
associated to the marked and labeled circle.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1973
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1974
If the circle is divided into two intervals, we can think of this $n{-}1$-category
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1975
as the 2-sided tensor product of the two 0-sphere modules associated to the two intervals.
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1976
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1977
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1978
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1979
Next we define $n$-category 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1980
These are just representations of (modules for) $n{-}1$-categories associated to marked and labeled 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1981
circles (1-spheres) which we just introduced.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1982
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1983
Equivalently, we can define 1-sphere modules in terms of 1-marked $k$-balls, $2\le k\le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1984
Fix a marked (and labeled) circle $S$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1985
Let $C(S)$ denote the cone of $S$, a marked 2-ball (Figure \ref{feb21d}).
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1986
%\nn{I need to make up my mind whether marked things are always labeled too.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1987
%For the time being, let's say they are.}
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1988
A 1-marked $k$-ball is anything homeomorphic to $B^j \times C(S)$, $0\le j\le n-2$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1989
where $B^j$ is the standard $j$-ball.
399
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1990
A 1-marked $k$-ball can be decomposed in various ways into smaller balls, which are either 
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1991
(a) smaller 1-marked $k$-balls, (b) 0-marked $k$-balls, or (c) plain $k$-balls.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1992
(See Figure \nn{need figure}.)
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1993
We now proceed as in the above module definitions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1994
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1995
\begin{figure}[t] \centering
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1996
\begin{tikzpicture}[baseline,line width = 2pt]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1997
\draw[blue][fill=blue!15!white] (0,0) circle (2);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1998
\fill[red] (0,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1999
\foreach \qm/\qa/\n in {70/-30/0, 120/95/1, -120/180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  2000
	\draw[red] (0,0) -- (\qm:2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  2001
	\path (\qa:1) node {\color{green!50!brown} $\cA_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  2002
	\path (\qm+20:2.5) node(M\n) {\color{green!50!brown} $\cM_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  2003
	\draw[line width=1pt, green!50!brown, ->] (M\n.\qm+135) to[out=\qm+135,in=\qm+90] (\qm+5:1.3);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  2004
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  2005
\end{tikzpicture}
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  2006
\caption{Cone on a marked circle}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  2007
\label{feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  2008
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  2009
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2010
A $n$-category 1-sphere module is, among other things, an $n{-}2$-category $\cD$ with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2011
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2012
	\cD(X) \deq \cM(X\times C(S)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2013
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2014
The product is pinched over the boundary of $C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2015
$\cD$ breaks into ``blocks" according to the restriction to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2016
image of $\bd C(S) = S$ in $X\times C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2017
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2018
More generally, consider a 2-manifold $Y$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2019
(e.g.\ 2-ball or 2-sphere) marked by an embedded 1-complex $K$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2020
The components of $Y\setminus K$ are labeled by $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2021
the edges of $K$ are labeled by 0-sphere modules, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2022
and the 0-cells of $K$ are labeled by 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2023
We can now apply the coend construction and obtain an $n{-}2$-category.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2024
If $Y$ has boundary then this $n{-}2$-category is a module for the $n{-}1$-category
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2025
associated to the (marked, labeled) boundary of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2026
In particular, if $\bd Y$ is a 1-sphere then we get a 1-sphere module as defined above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2027
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2028
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2029
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2030
It should now be clear how to define $n$-category $m$-sphere modules for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2031
For example, there is an $n{-}2$-category associated to a marked, labeled 2-sphere,
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2032
and a 2-sphere module is a representation of such an $n{-}2$-category.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2033
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2034
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2035
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2036
We can now define the $n$-or-less-dimensional part of our $n{+}1$-category $\cS$.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2037
Choose some collection of $n$-categories, then choose some collections of 0-sphere modules between
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2038
these $n$-categories, then choose some collection of 1-sphere modules for the various
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2039
possible marked 1-spheres labeled by the $n$-categories and 0-sphere modules, and so on.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2040
Let $L_i$ denote the collection of $i{-}1$-sphere modules we have chosen.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2041
(For convenience, we declare a $(-1)$-sphere module to be an $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2042
There is a wide range of possibilities.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2043
The set $L_0$ could contain infinitely many $n$-categories or just one.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2044
For each pair of $n$-categories in $L_0$, $L_1$ could contain no 0-sphere modules at all or 
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2045
it could contain several.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2046
The only requirement is that each $k$-sphere module be a module for a $k$-sphere $n{-}k$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2047
constructed out of labels taken from $L_j$ for $j<k$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2048
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2049
We now define $\cS(X)$, for $X$ a ball of dimension at most $n$, to be the set of all 
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2050
cell-complexes $K$ embedded in $X$, with the codimension-$j$ parts of $(X, K)$ labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2051
by elements of $L_j$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2052
As described above, we can think of each decorated $k$-ball as defining a $k{-}1$-sphere module
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2053
for the $n{-}k{+}1$-category associated to its decorated boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2054
Thus the $k$-morphisms of $\cS$ (for $k\le n$) can be thought 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2055
of as $n$-category $k{-}1$-sphere modules 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2056
(generalizations of bimodules).
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2057
On the other hand, we can equally well think of the $k$-morphisms as decorations on $k$-balls, 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2058
and from this point of view it is clear that they satisfy all of the axioms of an
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2059
$n{+}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2060
(All of the axioms for the less-than-$n{+}1$-dimensional part of an $n{+}1$-category, that is.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2061
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2062
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2063
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2064
Next we define the $n{+}1$-morphisms of $\cS$.
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2065
The construction of the 0- through $n$-morphisms was easy and tautological, but the 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2066
$n{+}1$-morphisms will require some effort and combinatorial topology, as well as additional
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2067
duality assumptions on the lower morphisms. These are required because we define the spaces of $n{+}1$-morphisms by making arbitrary choices of incoming and outgoing boundaries for each $n$-ball. The additional duality assumptions are needed to prove independence of our definition form these choices.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2068
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2069
Let $X$ be an $n{+}1$-ball, and let $c$ be a decoration of its boundary
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2070
by a cell complex labeled by 0- through $n$-morphisms, as above.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2071
Choose an $n{-}1$-sphere $E\sub \bd X$ which divides
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2072
$\bd X$ into ``incoming" and ``outgoing" boundary $\bd_-X$ and $\bd_+X$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2073
Let $E_c$ denote $E$ decorated by the restriction of $c$ to $E$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2074
Recall from above the associated 1-category $\cS(E_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2075
We can also have $\cS(E_c)$ modules $\cS(\bd_-X_c)$ and $\cS(\bd_+X_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2076
Define
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2077
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2078
	\cS(X; c; E) \deq \hom_{\cS(E_c)}(\cS(\bd_-X_c), \cS(\bd_+X_c)) .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2079
\]
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2080
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2081
We will show that if the sphere modules are equipped with a ``compatible family of 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2082
non-degenerate inner products", then there is a coherent family of isomorphisms
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2083
$\cS(X; c; E) \cong \cS(X; c; E')$ for all pairs of choices $E$ and $E'$.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2084
This will allow us to define $\cS(X; c)$ independently of the choice of $E$.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2085
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2086
First we must define ``inner product", ``non-degenerate" and ``compatible".
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2087
Let $Y$ be a decorated $n$-ball, and $\ol{Y}$ it's mirror image.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2088
(We assume we are working in the unoriented category.)
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2089
Let $Y\cup\ol{Y}$ denote the decorated $n$-sphere obtained by gluing $Y$ and $\ol{Y}$
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2090
along their common boundary.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2091
An {\it inner product} on $\cS(Y)$ is a dual vector
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2092
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2093
	z_Y : \cS(Y\cup\ol{Y}) \to \c.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2094
\]
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2095
We will also use the notation
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2096
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2097
	\langle a, b\rangle \deq z_Y(a\bullet \ol{b}) \in \c .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  2098
\]
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2099
An inner product induces a linear map
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2100
\begin{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2101
	\varphi: \cS(Y) &\to& \cS(Y)^* \\
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2102
	a &\mapsto& \langle a, \cdot \rangle
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2103
\end{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2104
which satisfies, for all morphisms $e$ of $\cS(\bd Y)$,
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2105
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2106
	\varphi(ae)(b) = \langle ae, b \rangle = z_Y(a\bullet e\bullet b) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2107
			\langle a, eb \rangle = \varphi(a)(eb) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2108
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2109
In other words, $\varphi$ is a map of $\cS(\bd Y)$ modules.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2110
An inner product is {\it non-degenerate} if $\varphi$ is an isomorphism.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2111
This implies that $\cS(Y; c)$ is finite dimensional for all boundary conditions $c$.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2112
(One can think of these inner products as giving some duality in dimension $n{+}1$;
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2113
heretofore we have only assumed duality in dimensions 0 through $n$.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2114
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2115
Next we define compatibility.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2116
Let $Y = Y_1\cup Y_2$ with $D = Y_1\cap Y_2$.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2117
Let $X_1$ and $X_2$ be the two components of $Y\times I$ cut along
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2118
$D\times I$, in both cases using the pinched product.
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2119
(Here we are overloading notation and letting $D$ denote both a decorated and an undecorated
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2120
manifold.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2121
We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2122
(see Figure \ref{jun23a}).
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2123
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2124
\begin{equation*}
497
18b742b1b308 YxI sliced open diagram
Scott Morrison <scott@tqft.net>
parents: 494
diff changeset
  2125
\mathfig{.6}{ncat/YxI-sliced}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2126
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2127
\caption{$Y\times I$ sliced open}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2128
\label{jun23a}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2129
\end{figure}
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2130
Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2131
which agree on their boundaries, we can evaluate
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2132
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2133
	z_{Y_i}(a_i\bullet b_i\bullet v) \in \c .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2134
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2135
(This requires a choice of homeomorphism $Y_i \cup \ol{Y}_i \cup (D\times I) \cong
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2136
Y_i \cup \ol{Y}_i$, but the value of $z_{Y_i}$ is independent of this choice.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2137
We can think of $z_{Y_i}$ as giving a function
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2138
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2139
	\psi_i : \cS(Y_i) \ot \cS(\ol{Y}_i) \to \cS(D\times I)^* 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2140
					\stackrel{\varphi\inv}{\longrightarrow} \cS(D\times I) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2141
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2142
We can now finally define a family of inner products to be {\it compatible} if
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2143
for all decompositions $Y = Y_1\cup Y_2$ as above and all $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2144
we have
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2145
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2146
	z_Y(a_1\bullet a_2\bullet b_1\bullet b_2) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2147
				z_{D\times I}(\psi_1(a_1\ot b_1)\bullet \psi_2(a_2\ot b_2)) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2148
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2149
In other words, the inner product on $Y$ is determined by the inner products on
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2150
$Y_1$, $Y_2$ and $D\times I$.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2151
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2152
Now we show how to unambiguously identify $\cS(X; c; E)$ and $\cS(X; c; E')$ for any
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2153
two choices of $E$ and $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2154
Consider first the case where $\bd X$ is decomposed as three $n$-balls $A$, $B$ and $C$,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2155
with $E = \bd(A\cup B)$ and $E' = \bd A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2156
We must provide an isomorphism between $\cS(X; c; E) = \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2157
and $\cS(X; c; E') = \hom(\cS(C\cup \ol{B}), \cS(A))$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2158
Let $D = B\cap A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2159
Then as above we can construct a map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2160
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2161
	\psi: \cS(B)\ot\cS(\ol{B}) \to \cS(D\times I) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2162
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2163
Given $f\in \hom(\cS(C), \cS(A\cup B))$ we define $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2164
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2165
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2166
	\cS(C\cup \ol{B}) \stackrel{f\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2167
		\cS(A\cup B\cup \ol{B})  \stackrel{\id\ot\psi}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2168
			\cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2169
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2170
(See Figure \ref{jun23b}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2171
\begin{figure}[t]
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2172
$$
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2173
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2174
\draw (0,0) node(R) {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2175
	-- (0.75,0) node[below] {$\bar{B}$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2176
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2177
	arc (0:80:1.5) node[above] {$D \times I$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2178
	arc (80:180:1.5);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2179
\foreach \r in {0.3, 0.6, 0.9, 1.2} {
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2180
	\draw[blue!50, line width = 0.5pt] (\r,0) arc (0:180:\r);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2181
}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2182
\draw[fill=white]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2183
	(R) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2184
	arc (45:65:3) node[below] {$B$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2185
	arc (65:90:3) node[below] {$A$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2186
	arc (90:135:3) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2187
	arc (-135:-90:3) node[below] {$C$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2188
	arc (-90:-45:3);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2189
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {$D$};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2190
\node[green!50!brown] at (-2,0) {\scalebox{2.0}{$\uparrow f$}};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2191
\node[green!50!brown] at (0.2,0.8) {\scalebox{2.0}{$\uparrow \psi$}};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2192
\end{tikzpicture}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2193
$$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2194
\caption{Moving $B$ from top to bottom}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2195
\label{jun23b}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2196
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2197
Let $D' = B\cap C$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2198
Using the inner products there is an adjoint map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2199
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2200
	\psi^\dagger: \cS(D'\times I) \to \cS(\ol{B})\ot\cS(B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2201
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2202
Given $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$ we define $f\in \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2203
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2204
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2205
	\cS(C) \stackrel{\cong}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2206
		\cS(C\cup(D'\times I)) \stackrel{\id\ot\psi^\dagger}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2207
			\cS(C\cup \ol{B}\cup B)   \stackrel{f'\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2208
				\cS(A\cup B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2209
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2210
(See Figure \ref{jun23c}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2211
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2212
\begin{equation*}
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2213
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=-1.5cm]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2214
\draw (0,0) node(R) {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2215
	-- (0.75,0) node[above] {$B$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2216
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2217
	arc (0:80:1.5) node[below] {$D' \times I$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2218
	arc (80:180:1.5);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2219
\foreach \r in {0.3, 0.6, 0.9, 1.2} {
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2220
	\draw[blue!50, line width = 0.5pt] (\r,0) arc (0:180:\r);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2221
}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2222
\draw[fill=white]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2223
	(R) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2224
	arc (45:65:3) node[above] {$\bar{B}$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2225
	arc (65:90:3) node[below] {$C$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2226
	arc (90:135:3) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2227
	arc (-135:-90:3) node[below] {$A$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2228
	arc (-90:-45:3);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2229
\draw[fill]  (150:1.5) circle (2pt) node[below=4pt] {$D'$};
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2230
\node[green!50!brown] at (-2,0) {\scalebox{2.0}{$f'\uparrow $}};
447
ba4f86b15ff0 more a-inf section
Kevin Walker <kevin@canyon23.net>
parents: 446
diff changeset
  2231
\node[green!50!brown] at (0.2,0.8) {\scalebox{2.0}{$\psi^\dagger \uparrow $}};
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2232
\end{tikzpicture}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2233
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2234
\caption{Moving $B$ from bottom to top}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2235
\label{jun23c}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2236
\end{figure}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2237
Let $D' = B\cap C$.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2238
It is not hard too show that the above two maps are mutually inverse.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2239
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2240
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2241
Any two choices of $E$ and $E'$ are related by a series of modifications as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2242
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2243
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2244
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2245
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2246
$E$ and $E'$ are isotopic, and any isotopy is 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2247
homotopic to a composition of small isotopies which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2248
(a) supported away from $E$, or (b) modify $E$ in the simple manner described above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2249
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2250
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2251
It follows from the lemma that we can construct an isomorphism
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2252
between $\cS(X; c; E)$ and $\cS(X; c; E')$ for any pair $E$, $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2253
This construction involves on a choice of simple ``moves" (as above) to transform
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2254
$E$ to $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2255
We must now show that the isomorphism does not depend on this choice.
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2256
We will show below that it suffice to check two ``movie moves".
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2257
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2258
The first movie move is to push $E$ across an $n$-ball $B$ as above, then push it back.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2259
The result is equivalent to doing nothing.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2260
As we remarked above, the isomorphisms corresponding to these two pushes are mutually
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2261
inverse, so we have invariance under this movie move.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2262
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2263
The second movie move replaces two successive pushes in the same direction,
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2264
across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$.
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2265
(See Figure \ref{jun23d}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2266
\begin{figure}[t]
456
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2267
\begin{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2268
\node(L) {
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2269
\scalebox{0.5}{
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2270
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2271
\draw[red] (0.75,0) -- +(2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2272
\draw[red] (0,0) node(R) {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2273
	-- (0.75,0) node[below] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2274
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2275
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2276
\draw (1.5,0) arc (0:149:1.5);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2277
\draw[red]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2278
	(R) node[circle,fill=black,inner sep=2pt] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2279
	arc (-45:-135:3) node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2280
\draw[red] (-5.5,0) -- (-4.2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2281
\draw (R) arc (45:75:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2282
\draw (150:1.5) arc (74:135:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2283
\node at (-2,0) {\scalebox{2.0}{$B_1$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2284
\node at (0.2,0.8) {\scalebox{2.0}{$B_2$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2285
\node at (-4,1.2) {\scalebox{2.0}{$A$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2286
\node at (-4,-1.2) {\scalebox{2.0}{$C$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2287
\node[red] at (2.53,0.35) {\scalebox{2.0}{$E$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2288
\end{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2289
}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2290
};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2291
\node(M) at (5,4) {
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2292
\scalebox{0.5}{
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2293
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2294
\draw[red] (0.75,0) -- +(2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2295
\draw[red] (0,0) node(R) {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2296
	-- (0.75,0) node[below] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2297
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2298
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2299
\draw(1.5,0) arc (0:149:1.5);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2300
\draw
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2301
	(R) node[circle,fill=black,inner sep=2pt] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2302
	arc (-45:-135:3) node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2303
\draw[red] (-5.5,0) -- (-4.2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2304
\draw[red] (R) arc (45:75:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2305
\draw[red] (150:1.5) arc (74:135:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2306
\node at (-2,0) {\scalebox{2.0}{$B_1$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2307
\node at (0.2,0.8) {\scalebox{2.0}{$B_2$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2308
\node at (-4,1.2) {\scalebox{2.0}{$A$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2309
\node at (-4,-1.2) {\scalebox{2.0}{$C$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2310
\node[red] at (2.53,0.35) {\scalebox{2.0}{$E$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2311
\end{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2312
}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2313
};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2314
\node(R) at (10,0) {
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2315
\scalebox{0.5}{
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2316
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2317
\draw[red] (0.75,0) -- +(2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2318
\draw (0,0) node(R) {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2319
	-- (0.75,0) node[below] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2320
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2321
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2322
\draw[red] (1.5,0) arc (0:149:1.5);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2323
\draw
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2324
	(R) node[circle,fill=black,inner sep=2pt] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2325
	arc (-45:-135:3) node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2326
\draw[red] (-5.5,0) -- (-4.2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2327
\draw (R) arc (45:75:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2328
\draw[red] (150:1.5) arc (74:135:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2329
\node at (-2,0) {\scalebox{2.0}{$B_1$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2330
\node at (0.2,0.8) {\scalebox{2.0}{$B_2$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2331
\node at (-4,1.2) {\scalebox{2.0}{$A$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2332
\node at (-4,-1.2) {\scalebox{2.0}{$C$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2333
\node[red] at (2.53,0.35) {\scalebox{2.0}{$E$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2334
\end{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2335
}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2336
};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2337
\draw[->] (L) to[out=90,in=225] node[sloped, above] {push $B_1$} (M);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2338
\draw[->] (M)  to[out=-45,in=90] node[sloped, above] {push $B_2$} (R);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2339
\draw[->] (L) to[out=-35,in=-145] node[sloped, below] {push $B_1 \cup B_2$} (R);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2340
\end{tikzpicture}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2341
\caption{A movie move}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2342
\label{jun23d}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2343
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2344
Invariance under this movie move follows from the compatibility of the inner
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2345
product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2346
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2347
%The third movie move could be called ``locality" or ``disjoint commutativity".
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2348
%\nn{...}
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2349
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2350
If $n\ge 2$, these two movie move suffice:
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2351
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2352
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2353
Assume $n\ge 2$ and fix $E$ and $E'$ as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2354
The any two sequences of elementary moves connecting $E$ to $E'$
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2355
are related by a sequence of the two movie moves defined above.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2356
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2357
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2358
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2359
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2360
Consider a two parameter family of diffeomorphisms (one parameter family of isotopies) 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2361
of $\bd X$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2362
Up to homotopy,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2363
such a family is homotopic to a family which can be decomposed 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2364
into small families which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2365
(a) supported away from $E$, 
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2366
(b) have boundaries corresponding to the two movie moves above.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2367
Finally, observe that the space of $E$'s is simply connected.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2368
(This fails for $n=1$.)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2369
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2370
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2371
For $n=1$ we have to check an additional ``global" relations corresponding to 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2372
rotating the 0-sphere $E$ around the 1-sphere $\bd X$.
529
Kevin Walker <kevin@canyon23.net>
parents: 528
diff changeset
  2373
But if $n=1$, then we are in the case of ordinary algebroids and bimodules,
Kevin Walker <kevin@canyon23.net>
parents: 528
diff changeset
  2374
and this is just the well-known ``Frobenius reciprocity" result for bimodules.
Kevin Walker <kevin@canyon23.net>
parents: 528
diff changeset
  2375
\nn{find citation for this.  Evans and Kawahigashi?}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2376
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2377
\medskip
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2378
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2379
We have now defined $\cS(X; c)$ for any $n{+}1$-ball $X$ with boundary decoration $c$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2380
We must also define, for any homeomorphism $X\to X'$, an action $f: \cS(X; c) \to \cS(X', f(c))$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2381
Choosing an equator $E\sub \bd X$ we have 
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2382
\[
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2383
	\cS(X; c) \cong \cS(X; c; E) \deq \hom_{\cS(E_c)}(\cS(\bd_-X_c), \cS(\bd_+X_c)) .
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2384
\]
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2385
We define $f: \cS(X; c) \to \cS(X', f(c))$ to be the tautological map
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2386
\[
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2387
	f: \cS(X; c; E) \to \cS(X'; f(c); f(E)) .
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2388
\]
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2389
It is easy to show that this is independent of the choice of $E$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2390
Note also that this map depends only on the restriction of $f$ to $\bd X$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2391
In particular, if $F: X\to X$ is the identity on $\bd X$ then $f$ acts trivially, as required by
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2392
Axiom \ref{axiom:extended-isotopies} of \S\ref{ss:n-cat-def}.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2393
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2394
We define product $n{+}1$-morphisms to be identity maps of modules.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2395
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2396
To define (binary) composition of $n{+}1$-morphisms, choose the obvious common equator
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2397
then compose the module maps.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2398
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  2399
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2400
\nn{still to do: associativity}
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2401
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2402
\medskip
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2403
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2404
\nn{Stuff that remains to be done (either below or in an appendix or in a separate section or in
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2405
a separate paper): discuss Morita equivalence; functors}
98
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 97
diff changeset
  2406
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
  2407