text/ncat.tex
author Kevin Walker <kevin@canyon23.net>
Thu, 06 Jan 2011 22:47:06 -0800
changeset 679 72a1d5014abc
parent 611 fd6e53389f2c
child 680 0591d017e698
permissions -rw-r--r--
compatibility of first and last n-cat axioms; mention stricter variant of last axiom
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
     4
\def\mmpar#1#2#3{\smallskip\noindent{\bf #1} (#2). {\it #3} \smallskip}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
     6
\section{\texorpdfstring{$n$}{n}-categories and their modules}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
\label{sec:ncats}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
     9
\subsection{Definition of \texorpdfstring{$n$}{n}-categories}
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
    10
\label{ss:n-cat-def}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
    11
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
Before proceeding, we need more appropriate definitions of $n$-categories, 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    13
$A_\infty$ $n$-categories, as well as modules for these, and tensor products of these modules.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    14
(As is the case throughout this paper, by ``$n$-category" we mean some notion of
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    15
a ``weak" $n$-category with ``strong duality".)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    16
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    17
The definitions presented below tie the categories more closely to the topology
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    18
and avoid combinatorial questions about, for example, the minimal sufficient
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    19
collections of generalized associativity axioms; we prefer maximal sets of axioms to minimal sets.
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
    20
It is easy to show that examples of topological origin
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    21
(e.g.\ categories whose morphisms are maps into spaces or decorated balls), 
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    22
satisfy our axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    23
For examples of a more purely algebraic origin, one would typically need the combinatorial
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    24
results that we have avoided here.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    25
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
    26
%\nn{Say something explicit about Lurie's work here? 
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
    27
%It seems like this was something that Dan Freed wanted explaining when we talked to him in Aspen}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    28
141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    29
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 139
diff changeset
    30
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    31
There are many existing definitions of $n$-categories, with various intended uses.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    32
In any such definition, there are sets of $k$-morphisms for each $0 \leq k \leq n$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    33
Generally, these sets are indexed by instances of a certain typical shape. 
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
    34
Some $n$-category definitions model $k$-morphisms on the standard bihedron (interval, bigon, and so on).
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    35
Other definitions have a separate set of 1-morphisms for each interval $[0,l] \sub \r$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    36
a separate set of 2-morphisms for each rectangle $[0,l_1]\times [0,l_2] \sub \r^2$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    37
and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
(This allows for strict associativity.)
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    39
Still other definitions (see, for example, \cite{MR2094071})
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    40
model the $k$-morphisms on more complicated combinatorial polyhedra.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    41
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    42
For our definition, we will allow our $k$-morphisms to have any shape, so long as it is homeomorphic to the standard $k$-ball.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    43
Thus we associate a set of $k$-morphisms $\cC_k(X)$ to any $k$-manifold $X$ homeomorphic 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    44
to the standard $k$-ball.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    45
By ``a $k$-ball" we mean any $k$-manifold which is homeomorphic to the 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    46
standard $k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    47
We {\it do not} assume that it is equipped with a 
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
    48
preferred homeomorphism to the standard $k$-ball, and the same applies to ``a $k$-sphere" below.
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
    49
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
    50
The axioms for an $n$-category are spread throughout this section.
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
    51
Collecting these together, an $n$-category is a gadget satisfying Axioms \ref{axiom:morphisms}, \ref{nca-boundary}, \ref{axiom:composition},  \ref{nca-assoc}, \ref{axiom:product} and \ref{axiom:extended-isotopies}; for an $A_\infty$ $n$-category, we replace Axiom \ref{axiom:extended-isotopies} with Axiom \ref{axiom:families}.
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
    52
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    53
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    54
Given a homeomorphism $f:X\to Y$ between $k$-balls (not necessarily fixed on 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
    55
the boundary), we want a corresponding
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    56
bijection of sets $f:\cC(X)\to \cC(Y)$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
    57
(This will imply ``strong duality", among other things.) Putting these together, we have
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    58
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    59
\begin{axiom}[Morphisms]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    60
\label{axiom:morphisms}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    61
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
    62
the category of $k$-balls and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    63
homeomorphisms to the category of sets and bijections.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    64
\end{axiom}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
    65
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    66
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    67
(Note: We often omit the subscript $k$.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    69
We are being deliberately vague about what flavor of $k$-balls
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    70
we are considering.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    71
They could be unoriented or oriented or Spin or $\mbox{Pin}_\pm$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    72
They could be topological or PL or smooth.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
    73
%\nn{need to check whether this makes much difference}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    74
(If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
    75
to be fussier about corners and boundaries.)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    76
For each flavor of manifold there is a corresponding flavor of $n$-category.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    77
For simplicity, we will concentrate on the case of PL unoriented manifolds.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    78
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    79
An ambitious reader may want to keep in mind two other classes of balls.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    80
The first is balls equipped with a map to some other space $Y$ (c.f. \cite{MR2079378}). 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    81
This will be used below (see the end of \S \ref{ss:product-formula}) to describe the blob complex of a fiber bundle with
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    82
base space $Y$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
    83
The second is balls equipped with a section of the tangent bundle, or the frame
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    84
bundle (i.e.\ framed balls), or more generally some partial flag bundle associated to the tangent bundle.
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    85
These can be used to define categories with less than the ``strong" duality we assume here,
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    86
though we will not develop that idea fully in this paper.
311
62d112a2df12 mention some other flavors of balls
Kevin Walker <kevin@canyon23.net>
parents: 310
diff changeset
    87
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    88
Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    89
of morphisms).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    90
The 0-sphere is unusual among spheres in that it is disconnected.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    91
Correspondingly, for 1-morphisms it makes sense to distinguish between domain and range.
319
121c580d5ef7 editting all over the place
Scott Morrison <scott@tqft.net>
parents: 314
diff changeset
    92
(Actually, this is only true in the oriented case, with 1-morphisms parameterized
359
6224e50c9311 metric independence for homeo action (proof done now)
Kevin Walker <kevin@canyon23.net>
parents: 356
diff changeset
    93
by {\it oriented} 1-balls.)
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    94
For $k>1$ and in the presence of strong duality the division into domain and range makes less sense.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    95
For example, in a pivotal tensor category, there are natural isomorphisms $\Hom{}{A}{B \tensor C} \isoto \Hom{}{B^* \tensor A}{C}$, etc. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
    96
(sometimes called ``Frobenius reciprocity''), which canonically identify all the morphism spaces which have the same boundary.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
    97
We prefer not to make the distinction in the first place.
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
    98
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
    99
Instead, we will combine the domain and range into a single entity which we call the 
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   100
boundary of a morphism.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   101
Morphisms are modeled on balls, so their boundaries are modeled on spheres.
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   102
In other words, we need to extend the functors $\cC_{k-1}$ from balls to spheres, for 
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   103
$1\le k \le n$.
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   104
At first it might seem that we need another axiom for this, but in fact once we have
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   105
all the axioms in this subsection for $0$ through $k-1$ we can use a colimit
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
   106
construction, as described in \S\ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   107
to spheres (and any other manifolds):
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   108
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   109
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   110
\label{lem:spheres}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   111
For each $1 \le k \le n$, we have a functor $\cl{\cC}_{k-1}$ from 
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   112
the category of $k{-}1$-spheres and 
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   113
homeomorphisms to the category of sets and bijections.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   114
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   115
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   116
We postpone the proof of this result until after we've actually given all the axioms.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   117
Note that defining this functor for some $k$ only requires the data described in Axiom \ref{axiom:morphisms} at level $k$, 
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   118
along with the data described in the other axioms at lower levels. 
263
fc3e10aa0d40 minor edits at the beginning of ncat
Scott Morrison <scott@tqft.net>
parents: 261
diff changeset
   119
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   120
%In fact, the functors for spheres are entirely determined by the functors for balls and the subsequent axioms. (In particular, $\cC(S^k)$ is the colimit of $\cC$ applied to decompositions of $S^k$ into balls.) However, it is easiest to think of it as additional data at this point.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   121
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   122
\begin{axiom}[Boundaries]\label{nca-boundary}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   123
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cl{\cC}_{k-1}(\bd X)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   124
These maps, for various $X$, comprise a natural transformation of functors.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   125
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   126
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   127
Note that the first ``$\bd$" above is part of the data for the category, 
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   128
while the second is the ordinary boundary of manifolds.
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   129
Given $c\in\cl{\cC}(\bd(X))$, we will write $\cC(X; c)$ for $\bd^{-1}(c)$, those morphisms with specified boundary $c$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   131
Most of the examples of $n$-categories we are interested in are enriched in the following sense.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   132
The various sets of $n$-morphisms $\cC(X; c)$, for all $n$-balls $X$ and
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   133
all $c\in \cl{\cC}(\bd X)$, have the structure of an object in some auxiliary symmetric monoidal category
522
Kevin Walker <kevin@canyon23.net>
parents: 512
diff changeset
   134
with sufficient limits and colimits
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   135
(e.g.\ vector spaces, or modules over some ring, or chain complexes),
522
Kevin Walker <kevin@canyon23.net>
parents: 512
diff changeset
   136
%\nn{actually, need both disj-union/sum and product/tensor-product; what's the name for this sort of cat?}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   137
and all the structure maps of the $n$-category should be compatible with the auxiliary
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   138
category structure.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   139
Note that this auxiliary structure is only in dimension $n$; if $\dim(Y) < n$ then 
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   140
$\cC(Y; c)$ is just a plain set.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   141
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   142
\medskip
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   143
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   144
In order to simplify the exposition we have concentrated on the case of 
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   145
unoriented PL manifolds and avoided the question of what exactly we mean by 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   146
the boundary of a manifold with extra structure, such as an oriented manifold.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   147
In general, all manifolds of dimension less than $n$ should be equipped with the germ
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   148
of a thickening to dimension $n$, and this germ should carry whatever structure we have 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   149
on $n$-manifolds.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   150
In addition, lower dimensional manifolds should be equipped with a framing
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   151
of their normal bundle in the thickening; the framing keeps track of which
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   152
side (iterated) bounded manifolds lie on.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   153
For example, the boundary of an oriented $n$-ball
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   154
should be an $n{-}1$-sphere equipped with an orientation of its once stabilized tangent
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   155
bundle and a choice of direction in this bundle indicating
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   156
which side the $n$-ball lies on.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   157
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   158
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   159
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
We have just argued that the boundary of a morphism has no preferred splitting into
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   161
domain and range, but the converse meets with our approval.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   162
That is, given compatible domain and range, we should be able to combine them into
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   163
the full boundary of a morphism.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   164
The following lemma will follow from the colimit construction used to define $\cl{\cC}_{k-1}$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   165
on spheres.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   166
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   167
\begin{lem}[Boundary from domain and range]
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   168
\label{lem:domain-and-range}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   169
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   170
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   171
Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the 
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   172
two maps $\bd: \cC(B_i)\to \cl{\cC}(E)$.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   173
Then we have an injective map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   174
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   175
	\gl_E : \cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2) \into \cl{\cC}(S)
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   176
\]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   177
which is natural with respect to the actions of homeomorphisms.
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   178
(When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   179
becomes a normal product.)
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
   180
\end{lem}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   181
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
   182
\begin{figure}[!ht] \centering
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   183
\begin{tikzpicture}[%every label/.style={green}
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   184
]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   185
\node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   186
\node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
186
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   187
\draw (S) arc  (-90:90:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   188
\draw (N) arc  (90:270:1);
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   189
\node[left] at (-1,1) {$B_1$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   190
\node[right] at (1,1) {$B_2$};
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 185
diff changeset
   191
\end{tikzpicture}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   192
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   193
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   194
Note that we insist on injectivity above. 
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   195
The lemma follows from Definition \ref{def:colim-fields} and Lemma \ref{lem:colim-injective}.
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   196
%\nn{we might want a more official looking proof...}
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   197
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   198
Let $\cl{\cC}(S)_E$ denote the image of $\gl_E$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
   199
We will refer to elements of $\cl{\cC}(S)_E$ as ``splittable along $E$" or ``transverse to $E$". 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   200
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   201
If $X$ is a $k$-ball and $E \sub \bd X$ splits $\bd X$ into two $k{-}1$-balls $B_1$ and $B_2$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   202
as above, then we define $\cC(X)_E = \bd^{-1}(\cl{\cC}(\bd X)_E)$.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   203
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   204
We will call the projection $\cl{\cC}(S)_E \to \cC(B_i)$
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   205
a {\it restriction} map and write $\res_{B_i}(a)$
333
3e61a9197613 updating notation in ncat
Scott Morrison <scott@tqft.net>
parents: 329
diff changeset
   206
(or simply $\res(a)$ when there is no ambiguity), for $a\in \cl{\cC}(S)_E$.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   207
More generally, we also include under the rubric ``restriction map"
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   208
the boundary maps of Axiom \ref{nca-boundary} above,
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   209
another class of maps introduced after Axiom \ref{nca-assoc} below, as well as any composition
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   210
of restriction maps.
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   211
In particular, we have restriction maps $\cC(X)_E \to \cC(B_i)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   212
($i = 1, 2$, notation from previous paragraph).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   213
These restriction maps can be thought of as 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   214
domain and range maps, relative to the choice of splitting $\bd X = B_1 \cup_E B_2$.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   215
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   216
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
Next we consider composition of morphisms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   218
For $n$-categories which lack strong duality, one usually considers
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   219
$k$ different types of composition of $k$-morphisms, each associated to a different direction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   220
(For example, vertical and horizontal composition of 2-morphisms.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   221
In the presence of strong duality, these $k$ distinct compositions are subsumed into 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   222
one general type of composition which can be in any ``direction".
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   223
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   224
\begin{axiom}[Composition]
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
   225
\label{axiom:composition}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   226
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   227
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   228
Let $E = \bd Y$, which is a $k{-}2$-sphere.
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   229
Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   230
We have restriction (domain or range) maps $\cC(B_i)_E \to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   231
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   232
We have a map
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   233
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   234
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   235
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   236
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   237
to the intersection of the boundaries of $B$ and $B_i$.
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
   238
If $k < n$,
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
   239
or if $k=n$ and we are in the $A_\infty$ case, 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
   240
we require that $\gl_Y$ is injective.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
   241
(For $k=n$ in the plain (non-$A_\infty$) case, see below.)
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   242
\end{axiom}
94
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   243
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
   244
\begin{figure}[!ht] \centering
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   245
\begin{tikzpicture}[%every label/.style={green},
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   246
				x=1.5cm,y=1.5cm]
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   247
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   248
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   249
\draw (S) arc  (-90:90:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   250
\draw (N) arc  (90:270:1);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   251
\draw (N) -- (S);
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   252
\node[left] at (-1/4,1) {$B_1$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   253
\node[right] at (1/4,1) {$B_2$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   254
\node at (1/6,3/2)  {$Y$};
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   255
\end{tikzpicture}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   256
\caption{From two balls to one ball.}\label{blah5}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   257
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   258
\begin{axiom}[Strict associativity] \label{nca-assoc}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   259
The composition (gluing) maps above are strictly associative.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   260
Given any splitting of a ball $B$ into smaller balls
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   261
$$\bigsqcup B_i \to B,$$ 
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   262
any sequence of gluings (in the sense of Definition \ref{defn:gluing-decomposition}, where all the intermediate steps are also disjoint unions of balls) yields the same result.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   263
\end{axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   264
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   265
\begin{figure}[!ht]
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   266
$$\mathfig{.65}{ncat/strict-associativity}$$
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   267
\caption{An example of strict associativity.}\label{blah6}\end{figure}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   268
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   269
We'll use the notation  $a\bullet b$ for the glued together field $\gl_Y(a, b)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   270
In the other direction, we will call the projection from $\cC(B)_E$ to $\cC(B_i)_E$ 
195
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   271
a restriction map (one of many types of map so called) and write $\res_{B_i}(a)$ for $a\in \cC(B)_E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   272
%Compositions of boundary and restriction maps will also be called restriction maps.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   273
%For example, if $B$ is a $k$-ball and $Y\sub \bd B$ is a $k{-}1$-ball, there is a
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 193
diff changeset
   274
%restriction map from $\cC(B)_{\bd Y}$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   275
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   276
We will write $\cC(B)_Y$ for the image of $\gl_Y$ in $\cC(B)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   277
We will call elements of $\cC(B)_Y$ morphisms which are 
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   278
``splittable along $Y$'' or ``transverse to $Y$''.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   279
We have $\cC(B)_Y \sub \cC(B)_E \sub \cC(B)$.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   280
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   281
More generally, let $\alpha$ be a splitting of $X$ into smaller balls.
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   282
Let $\cC(X)_\alpha \sub \cC(X)$ denote the image of the iterated gluing maps from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   283
the smaller balls to $X$.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   284
We  say that elements of $\cC(X)_\alpha$ are morphisms which are ``splittable along $\alpha$".
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   285
In situations where the splitting is notationally anonymous, we will write
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   286
$\cC(X)\spl$ for the morphisms which are splittable along (a.k.a.\ transverse to)
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   287
the unnamed splitting.
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   288
If $\beta$ is a ball decomposition of $\bd X$, we define $\cC(X)_\beta \deq \bd\inv(\cl{\cC}(\bd X)_\beta)$;
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   289
this can also be denoted $\cC(X)\spl$ if the context contains an anonymous
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   290
decomposition of $\bd X$ and no competing splitting of $X$.
192
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   291
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 191
diff changeset
   292
The above two composition axioms are equivalent to the following one,
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   293
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   294
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   295
\xxpar{Multi-composition:}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   296
{Given any splitting $B_1 \sqcup \cdots \sqcup B_m \to B$ of a $k$-ball
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   297
into small $k$-balls, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
   298
map from an appropriate subset (like a fibered product) 
193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 192
diff changeset
   299
of $\cC(B_1)\spl\times\cdots\times\cC(B_m)\spl$ to $\cC(B)\spl$,
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   300
and these various $m$-fold composition maps satisfy an
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   301
operad-type strict associativity condition (Figure \ref{fig:operad-composition}).}
179
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   302
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 178
diff changeset
   303
\begin{figure}[!ht]
365
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   304
$$\mathfig{.8}{ncat/operad-composition}$$
a93bb76a8525 moving an already prepared diagram out of tempkw
Scott Morrison <scott@tqft.net>
parents: 364
diff changeset
   305
\caption{Operad composition and associativity}\label{fig:operad-composition}\end{figure}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   306
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   307
The next axiom is related to identity morphisms, though that might not be immediately obvious.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   308
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   309
\begin{axiom}[Product (identity) morphisms, preliminary version]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   310
For each $k$-ball $X$ and $m$-ball $D$, with $k+m \le n$, there is a map $\cC(X)\to \cC(X\times D)$, 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   311
usually denoted $a\mapsto a\times D$ for $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   312
These maps must satisfy the following conditions.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   313
\begin{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   314
\item
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   315
If $f:X\to X'$ and $\tilde{f}:X\times D \to X'\times D'$ are homeomorphisms such that the diagram
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   316
\[ \xymatrix{
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   317
	X\times D \ar[r]^{\tilde{f}} \ar[d]_{\pi} & X'\times D' \ar[d]^{\pi} \\
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   318
	X \ar[r]^{f} & X'
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   319
} \]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   320
commutes, then we have 
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   321
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   322
	\tilde{f}(a\times D) = f(a)\times D' .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   323
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   324
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   325
Product morphisms are compatible with gluing (composition) in both factors:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   326
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   327
	(a'\times D)\bullet(a''\times D) = (a'\bullet a'')\times D
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   328
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   329
and
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   330
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   331
	(a\times D')\bullet(a\times D'') = a\times (D'\bullet D'') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   332
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   333
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   334
Product morphisms are associative:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   335
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   336
	(a\times D)\times D' = a\times (D\times D') .
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   337
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   338
(Here we are implicitly using functoriality and the obvious homeomorphism
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   339
$(X\times D)\times D' \to X\times(D\times D')$.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   340
\item
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   341
Product morphisms are compatible with restriction:
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   342
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   343
	\res_{X\times E}(a\times D) = a\times E
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   344
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   345
for $E\sub \bd D$ and $a\in \cC(X)$.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   346
\end{enumerate}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   347
\end{axiom}
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   348
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   349
We will need to strengthen the above preliminary version of the axiom to allow
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   350
for products which are ``pinched" in various ways along their boundary.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   351
(See Figure \ref{pinched_prods}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   352
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   353
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   354
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   355
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   356
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   357
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   358
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   359
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   360
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   361
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   362
\draw[blue,line width=1.5pt] (0,-3) -- (5.66,-3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   363
\draw[->,red,line width=2pt] (2.83,-1.5) -- (2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   364
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   365
\qquad \qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   366
\begin{tikzpicture}[baseline=-0.15cm]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   367
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   368
\path[clip] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   369
\draw[blue,line width=2pt] (0,1) arc (90:135:8 and 4)  arc (-135:-90:8 and 4) -- cycle;
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   370
\foreach \x in {-6, -5.5, ..., 0} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   371
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   372
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   373
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   374
\draw[blue,line width=1.5pt] (-5.66,-3.15) -- (0,-3.15);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   375
\draw[->,red,line width=2pt] (-2.83,-1.5) -- (-2.83,-2.5);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   376
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   377
$$
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   378
\caption{Examples of pinched products}\label{pinched_prods}
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   379
\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   380
(The need for a strengthened version will become apparent in Appendix \ref{sec:comparing-defs}
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   381
where we construct a traditional category from a topological category.)
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   382
Define a {\it pinched product} to be a map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   383
\[
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   384
	\pi: E\to X
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   385
\]
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   386
such that $E$ is a $k{+}m$-ball, $X$ is a $k$-ball ($m\ge 1$), and $\pi$ is locally modeled
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   387
on a standard iterated degeneracy map
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   388
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   389
	d: \Delta^{k+m}\to\Delta^k .
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   390
\]
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   391
(We thank Kevin Costello for suggesting this approach.)
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   392
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   393
Note that for each interior point $x\in X$, $\pi\inv(x)$ is an $m$-ball,
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   394
and for each boundary point $x\in\bd X$, $\pi\inv(x)$ is a ball of dimension
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   395
$l \le m$, with $l$ depending on $x$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   396
It is easy to see that a composition of pinched products is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   397
A {\it sub pinched product} is a sub-$m$-ball $E'\sub E$ such that the restriction
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   398
$\pi:E'\to \pi(E')$ is again a pinched product.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   399
A {union} of pinched products is a decomposition $E = \cup_i E_i$
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   400
such that each $E_i\sub E$ is a sub pinched product.
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   401
(See Figure \ref{pinched_prod_unions}.)
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   402
\begin{figure}[t]
364
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   403
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   404
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   405
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   406
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   407
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   408
\draw[blue] (0,0) -- (5.66,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   409
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   410
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   411
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   412
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   413
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   414
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   415
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   416
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   417
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   418
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   419
\draw[blue] (0,0) -- (5,0);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   420
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   421
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   422
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   423
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   424
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   425
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   426
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   427
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   428
\path[clip] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   429
\draw[blue,line width=2pt] (0,0) arc (135:45:4) arc (-45:-135:4);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   430
\draw[blue] (2.83,3) circle (3);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   431
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   432
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   433
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   434
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   435
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   436
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   437
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   438
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   439
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   440
\path[clip] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   441
\draw[blue,line width=2pt] (0,-1) rectangle (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   442
\draw[blue] (0,-1) -- (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   443
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   444
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   445
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   446
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   447
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   448
\qquad
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   449
\begin{tikzpicture}[baseline=0]
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   450
\begin{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   451
\path[clip] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   452
\draw[blue,line width=2pt] (0,-1) rectangle (5,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   453
\draw[blue] (1,-1) .. controls  (2,-1) and (3,1) .. (4,1);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   454
\foreach \x in {0, 0.5, ..., 6} {
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   455
	\draw[green!50!brown] (\x,-2) -- (\x,2);
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   456
}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   457
\end{scope}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   458
\end{tikzpicture}
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   459
$$
93d636f420c7 converting some hand drawn pictures to tikz
Scott Morrison <scott@tqft.net>
parents: 359
diff changeset
   460
\caption{Five examples of unions of pinched products}\label{pinched_prod_unions}
352
38da35694123 added pinched product figs
Kevin Walker <kevin@canyon23.net>
parents: 348
diff changeset
   461
\end{figure}
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   462
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   463
The product axiom will give a map $\pi^*:\cC(X)\to \cC(E)$ for each pinched product
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   464
$\pi:E\to X$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   465
Morphisms in the image of $\pi^*$ will be called product morphisms.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   466
Before stating the axiom, we illustrate it in our two motivating examples of $n$-categories.
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   467
In the case where $\cC(X) = \{f: X\to T\}$, we define $\pi^*(f) = f\circ\pi$.
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   468
In the case where $\cC(X)$ is the set of all labeled embedded cell complexes $K$ in $X$, 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   469
define $\pi^*(K) = \pi\inv(K)$, with each codimension $i$ cell $\pi\inv(c)$ labeled by the
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   470
same (traditional) $i$-morphism as the corresponding codimension $i$ cell $c$.
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   471
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   472
551
9dfb5db2acd7 remaining changes from tuesday afternoon
Scott Morrison <scott@tqft.net>
parents: 550
diff changeset
   473
%\addtocounter{axiom}{-1}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   474
\begin{axiom}[Product (identity) morphisms]
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
   475
\label{axiom:product}
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   476
For each pinched product $\pi:E\to X$, with $X$ a $k$-ball and $E$ a $k{+}m$-ball ($m\ge 1$),
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   477
there is a map $\pi^*:\cC(X)\to \cC(E)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   478
These maps must satisfy the following conditions.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   479
\begin{enumerate}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   480
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   481
If $\pi:E\to X$ and $\pi':E'\to X'$ are pinched products, and
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   482
if $f:X\to X'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   483
\[ \xymatrix{
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   484
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   485
	X \ar[r]^{f} & X'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   486
} \]
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   487
commutes, then we have 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   488
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   489
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   490
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   491
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   492
Product morphisms are compatible with gluing (composition).
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   493
Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ 
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   494
be pinched products with $E = E_1\cup E_2$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   495
Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\sub X$.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   496
Then 
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   497
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   498
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   499
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   500
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   501
Product morphisms are associative.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   502
If $\pi:E\to X$ and $\rho:D\to E$ are pinched products then
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   503
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   504
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
109
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 108
diff changeset
   505
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   506
\item
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   507
Product morphisms are compatible with restriction.
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   508
If we have a commutative diagram
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   509
\[ \xymatrix{
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   510
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   511
	Y \ar@{^(->}[r] & X
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   512
} \]
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   513
such that $\rho$ and $\pi$ are pinched products, then
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   514
\[
344
4718e0696bc6 finished product axiom
Kevin Walker <kevin@canyon23.net>
parents: 343
diff changeset
   515
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
   516
\]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   517
\end{enumerate}
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   518
\end{axiom}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   519
343
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   520
45aceaf20a77 start on product axiom
Kevin Walker <kevin@canyon23.net>
parents: 342
diff changeset
   521
\medskip
128
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 125
diff changeset
   522
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   523
All of the axioms listed above hold for both ordinary $n$-categories and $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   524
The last axiom (below), concerning actions of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   525
homeomorphisms in the top dimension $n$, distinguishes the two cases.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   526
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   527
We start with the plain $n$-category case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   528
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   529
\begin{axiom}[\textup{\textbf{[preliminary]}} Isotopy invariance in dimension $n$]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   530
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   531
to the identity on $\bd X$ and is isotopic (rel boundary) to the identity.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   532
Then $f$ acts trivially on $\cC(X)$; that is $f(a) = a$ for all $a\in \cC(X)$.
267
Scott Morrison <scott@tqft.net>
parents: 266
diff changeset
   533
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   534
174
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 155
diff changeset
   535
This axiom needs to be strengthened to force product morphisms to act as the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   536
Let $X$ be an $n$-ball and $Y\sub\bd X$ be an $n{-}1$-ball.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   537
Let $J$ be a 1-ball (interval).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   538
We have a collaring homeomorphism $s_{Y,J}: X\cup_Y (Y\times J) \to X$.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   539
(Here we use $Y\times J$ with boundary entirely pinched.)
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   540
We define a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   541
\begin{eqnarray*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   542
	\psi_{Y,J}: \cC(X) &\to& \cC(X) \\
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   543
	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   544
\end{eqnarray*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   545
(See Figure \ref{glue-collar}.)
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   546
\begin{figure}[!ht]
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   547
\begin{equation*}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   548
\begin{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   549
\def\rad{1}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   550
\def\srad{0.75}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   551
\def\gap{4.5}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   552
\foreach \i in {0, 1, 2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   553
	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   554
	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   555
	\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   556
		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   557
	}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   558
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   559
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   560
\begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   561
	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   562
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   563
\node[right=1mm] at (0.east) {$a$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   564
\draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   565
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   566
\draw (1-small)  circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   567
\foreach \theta in {90, 72, ..., -90} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   568
	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   569
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   570
\filldraw[fill=white] (1) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   571
\foreach \n in {1,2} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   572
	\fill (intersection \n of 1-small and 1) circle (2pt);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   573
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   574
\node[below] at (1-small.south) {$a \times J$};
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   575
\draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   576
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   577
\begin{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   578
\path[clip] (2) circle (\rad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   579
\draw[clip] (2.east) circle (\srad);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   580
\foreach \y in {1, 0.86, ..., -1} {
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   581
	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   582
}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   583
\end{scope}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   584
\end{tikzpicture}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   585
\end{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   586
\begin{equation*}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   587
\xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
189
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   588
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   589
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 187
diff changeset
   590
\caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   591
We call a map of this form a {\it collar map}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   592
It can be thought of as the action of the inverse of
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   593
a map which projects a collar neighborhood of $Y$ onto $Y$,
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   594
or as the limit of homeomorphisms $X\to X$ which expand a very thin collar of $Y$
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   595
to a larger collar.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   596
We call the equivalence relation generated by collar maps and homeomorphisms
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   597
isotopic (rel boundary) to the identity {\it extended isotopy}.
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   598
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   599
The revised axiom is
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   600
551
9dfb5db2acd7 remaining changes from tuesday afternoon
Scott Morrison <scott@tqft.net>
parents: 550
diff changeset
   601
%\addtocounter{axiom}{-1}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
   602
\begin{axiom}[\textup{\textbf{[plain  version]}} Extended isotopy invariance in dimension $n$.]
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   603
\label{axiom:extended-isotopies}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   604
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   605
to the identity on $\bd X$ and isotopic (rel boundary) to the identity.
187
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 186
diff changeset
   606
Then $f$ acts trivially on $\cC(X)$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
   607
In addition, collar maps act trivially on $\cC(X)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   608
\end{axiom}
96
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 95
diff changeset
   609
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   610
\smallskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   611
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   612
For $A_\infty$ $n$-categories, we replace
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   613
isotopy invariance with the requirement that families of homeomorphisms act.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   614
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   615
Let $\Homeo_\bd(X)$ denote homeomorphisms of $X$ which fix $\bd X$ and
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   616
$C_*(\Homeo_\bd(X))$ denote the singular chains on this space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   617
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   618
551
9dfb5db2acd7 remaining changes from tuesday afternoon
Scott Morrison <scott@tqft.net>
parents: 550
diff changeset
   619
%\addtocounter{axiom}{-1}
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   620
\begin{axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$.]
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
   621
\label{axiom:families}
335
9bf409eb5040 mostly finished inserting \cl
Scott Morrison <scott@tqft.net>
parents: 334
diff changeset
   622
For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   623
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   624
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   625
\]
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   626
These action maps are required to be associative up to homotopy,
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   627
%\nn{iterated homotopy?}
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   628
and also compatible with composition (gluing) in the sense that
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
   629
a diagram like the one in Theorem \ref{thm:CH} commutes.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   630
%\nn{repeat diagram here?}
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   631
%\nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
679
72a1d5014abc compatibility of first and last n-cat axioms; mention stricter variant of last axiom
Kevin Walker <kevin@canyon23.net>
parents: 611
diff changeset
   632
On $C_0(\Homeo_\bd(X))\ot \cC(X; c)$ the action should coincide 
72a1d5014abc compatibility of first and last n-cat axioms; mention stricter variant of last axiom
Kevin Walker <kevin@canyon23.net>
parents: 611
diff changeset
   633
with the one coming from Axiom \ref{axiom:morphisms}.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   634
\end{axiom}
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   635
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   636
We should strengthen the above $A_\infty$ axiom to apply to families of collar maps.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   637
To do this we need to explain how collar maps form a topological space.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   638
Roughly, the set of collared $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   639
and we can replace the class of all intervals $J$ with intervals contained in $\r$.
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   640
Having chains on the space of collar maps act gives rise to coherence maps involving
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   641
weak identities.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   642
We will not pursue this in detail here.
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   643
679
72a1d5014abc compatibility of first and last n-cat axioms; mention stricter variant of last axiom
Kevin Walker <kevin@canyon23.net>
parents: 611
diff changeset
   644
A variant on the above axiom would be to drop the ``up to homotopy" and require a strictly associative action.
72a1d5014abc compatibility of first and last n-cat axioms; mention stricter variant of last axiom
Kevin Walker <kevin@canyon23.net>
parents: 611
diff changeset
   645
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   646
Note that if we take homology of chain complexes, we turn an $A_\infty$ $n$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
   647
into a plain $n$-category (enriched over graded groups).
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   648
In a different direction, if we enrich over topological spaces instead of chain complexes,
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   649
we get a space version of an $A_\infty$ $n$-category, with $\Homeo_\bd(X)$ acting 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   650
instead of  $C_*(\Homeo_\bd(X))$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   651
Taking singular chains converts such a space type $A_\infty$ $n$-category into a chain complex
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   652
type $A_\infty$ $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   653
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   654
\medskip
97
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 96
diff changeset
   655
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   656
The alert reader will have already noticed that our definition of a (plain) $n$-category
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   657
is extremely similar to our definition of a system of fields.
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   658
There are two differences.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   659
First, for the $n$-category definition we restrict our attention to balls
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   660
(and their boundaries), while for fields we consider all manifolds.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   661
Second,  in category definition we directly impose isotopy
416
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   662
invariance in dimension $n$, while in the fields definition we 
c06a899bd1f0 more ncat section
Kevin Walker <kevin@canyon23.net>
parents: 415
diff changeset
   663
instead remember a subspace of local relations which contain differences of isotopic fields. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   664
(Recall that the compensation for this complication is that we can demand that the gluing map for fields is injective.)
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   665
Thus a system of fields and local relations $(\cF,U)$ determines an $n$-category $\cC_ {\cF,U}$ simply by restricting our attention to
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   666
balls and, at level $n$, quotienting out by the local relations:
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   667
\begin{align*}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   668
\cC_{\cF,U}(B^k) & = \begin{cases}\cF(B) & \text{when $k<n$,} \\ \cF(B) / U(B) & \text{when $k=n$.}\end{cases}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   669
\end{align*}
142
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
   670
This $n$-category can be thought of as the local part of the fields.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   671
Conversely, given a topological $n$-category we can construct a system of fields via 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   672
a colimit construction; see \S \ref{ss:ncat_fields} below.
99
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 98
diff changeset
   673
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
   674
\subsection{Examples of \texorpdfstring{$n$}{n}-categories}
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   675
\label{ss:ncat-examples}
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   676
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   677
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   678
We now describe several classes of examples of $n$-categories satisfying our axioms.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   679
We typically specify only the morphisms; the rest of the data for the category
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   680
(restriction maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   681
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   682
\begin{example}[Maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   683
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   684
\label{ex:maps-to-a-space}%
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   685
Let $T$ be a topological space.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   686
We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   687
For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   688
all continuous maps from $X$ to $T$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   689
For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   690
homotopies fixed on $\bd X$.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   691
(Note that homotopy invariance implies isotopy invariance.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   692
For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   693
be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   694
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   695
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   696
\noop{
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   697
Recall we described a system of fields and local relations based on maps to $T$ in Example \ref{ex:maps-to-a-space(fields)} above.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   698
Constructing a system of fields from $\pi_{\leq n}(T)$ recovers that example.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   699
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   700
an n-cat}
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   701
}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   702
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
   703
\begin{example}[Maps to a space, with a fiber] \label{ex:maps-with-fiber}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   704
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   705
\label{ex:maps-to-a-space-with-a-fiber}%
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   706
We can modify the example above, by fixing a
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   707
closed $m$-manifold $F$, and defining $\pi^{\times F}_{\leq n}(T)(X) = \Maps(X \times F \to T)$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   708
otherwise leaving the definition in Example \ref{ex:maps-to-a-space} unchanged.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   709
Taking $F$ to be a point recovers the previous case.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   710
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   711
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   712
\begin{example}[Linearized, twisted, maps to a space]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   713
\rm
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   714
\label{ex:linearized-maps-to-a-space}%
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   715
We can linearize Examples \ref{ex:maps-to-a-space} and \ref{ex:maps-to-a-space-with-a-fiber} as follows.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   716
Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   717
(have in mind the trivial cocycle).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   718
For $X$ of dimension less than $n$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X)$ as before, ignoring $\alpha$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   719
For $X$ an $n$-ball and $c\in \Maps(\bdy X \times F \to T)$ define $\pi^{\alpha, \times F}_{\leq n}(T)(X; c)$ to be
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   720
the $R$-module of finite linear combinations of continuous maps from $X\times F$ to $T$,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   721
modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   722
$h: X\times F\times I \to T$, then $a = \alpha(h)b$.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   723
(In order for this to be well-defined we must choose $\alpha$ to be zero on degenerate simplices.
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   724
Alternatively, we could equip the balls with fundamental classes.)
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   725
\end{example}
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   726
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   727
\begin{example}[$n$-categories from TQFTs]
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   728
\rm
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   729
\label{ex:ncats-from-tqfts}%
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   730
Let $\cF$ be a TQFT in the sense of \S\ref{sec:fields}: an $n$-dimensional 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   731
system of fields (also denoted $\cF$) and local relations.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   732
Let $W$ be an $n{-}j$-manifold.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   733
Define the $j$-category $\cF(W)$ as follows.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   734
If $X$ is a $k$-ball with $k<j$, let $\cF(W)(X) \deq \cF(W\times X)$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   735
If $X$ is a $j$-ball and $c\in \cl{\cF(W)}(\bd X)$, 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   736
let $\cF(W)(X; c) \deq A_\cF(W\times X; c)$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   737
\end{example}
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   738
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   739
The next example is only intended to be illustrative, as we don't specify 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   740
which definition of a ``traditional $n$-category" we intend.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   741
Further, most of these definitions don't even have an agreed-upon notion of 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
   742
``strong duality", which we assume here.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   743
\begin{example}[Traditional $n$-categories]
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   744
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   745
\label{ex:traditional-n-categories}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   746
Given a ``traditional $n$-category with strong duality" $C$
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   747
define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   748
to be the set of all $C$-labeled embedded cell complexes of $X$ (c.f. \S \ref{sec:fields}).
339
9698f584e732 starting to revise the ancient TQFTs-from-fields section; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 336
diff changeset
   749
For $X$ an $n$-ball and $c\in \cl{\cC}(\bd X)$, define $\cC(X; c)$ to be finite linear
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   750
combinations of $C$-labeled embedded cell complexes of $X$
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   751
modulo the kernel of the evaluation map.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   752
Define a product morphism $a\times D$, for $D$ an $m$-ball, to be the product of the cell complex of $a$ with $D$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   753
with each cell labelled according to the corresponding cell for $a$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   754
(These two cells have the same codimension.)
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   755
More generally, start with an $n{+}m$-category $C$ and a closed $m$-manifold $F$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   756
Define $\cC(X)$, for $\dim(X) < n$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   757
to be the set of all $C$-labeled embedded cell complexes of $X\times F$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   758
Define $\cC(X; c)$, for $X$ an $n$-ball,
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   759
to be the dual Hilbert space $A(X\times F; c)$.
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
   760
(See \S\ref{sec:constructing-a-tqft}.)
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   761
\end{example}
313
Scott Morrison <scott@tqft.net>
parents: 312
diff changeset
   762
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   763
\noop{
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   764
\nn{shouldn't this go elsewhere?  we haven't yet discussed constructing a system of fields from
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   765
an n-cat}
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   766
Recall we described a system of fields and local relations based on a ``traditional $n$-category" 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   767
$C$ in Example \ref{ex:traditional-n-categories(fields)} above.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   768
\nn{KW: We already refer to \S \ref{sec:fields} above}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   769
Constructing a system of fields from $\cC$ recovers that example. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   770
\todo{Except that it doesn't: pasting diagrams v.s. string diagrams.}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   771
\nn{KW: but the above example is all about string diagrams.  the only difference is at the top level,
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   772
where the quotient is built in.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   773
but (string diagrams)/(relations) is isomorphic to 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   774
(pasting diagrams composed of smaller string diagrams)/(relations)}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   775
}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   776
204
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 200
diff changeset
   777
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   778
\begin{example}[The bordism $n$-category, plain version]
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   779
\label{ex:bord-cat}
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   780
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   781
\label{ex:bordism-category}
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   782
For a $k$-ball $X$, $k<n$, define $\Bord^n(X)$ to be the set of all $k$-dimensional
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   783
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   784
to $\bd X$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
   785
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes (rel boundary) of such $n$-dimensional submanifolds;
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   786
we identify $W$ and $W'$ if $\bd W = \bd W'$ and there is a homeomorphism
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   787
$W \to W'$ which restricts to the identity on the boundary.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   788
\end{example}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   789
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   790
%\nn{the next example might be an unnecessary distraction.  consider deleting it.}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   791
196
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   792
%\begin{example}[Variation on the above examples]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   793
%We could allow $F$ to have boundary and specify boundary conditions on $X\times \bd F$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   794
%for example product boundary conditions or take the union over all boundary conditions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   795
%%\nn{maybe should not emphasize this case, since it's ``better" in some sense
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   796
%%to think of these guys as affording a representation
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   797
%%of the $n{+}1$-category associated to $\bd F$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 195
diff changeset
   798
%\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   799
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   800
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   801
%We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   802
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   803
\begin{example}[Chains (or space) of maps to a space]
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   804
\rm
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   805
\label{ex:chains-of-maps-to-a-space}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   806
We can modify Example \ref{ex:maps-to-a-space} above to define the fundamental $A_\infty$ $n$-category $\pi^\infty_{\le n}(T)$ of a topological space $T$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   807
For a $k$-ball $X$, with $k < n$, the set $\pi^\infty_{\leq n}(T)(X)$ is just $\Maps(X \to T)$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   808
Define $\pi^\infty_{\leq n}(T)(X; c)$ for an $n$-ball $X$ and $c \in \pi^\infty_{\leq n}(T)(\bdy X)$ to be the chain complex
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   809
\[
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   810
	C_*(\Maps_c(X\times F \to T)),
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   811
\]
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   812
where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   813
and $C_*$ denotes singular chains.
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   814
Alternatively, if we take the $n$-morphisms to be simply $\Maps_c(X\times F \to T)$, 
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   815
we get an $A_\infty$ $n$-category enriched over spaces.
190
16efb5711c6f minor edits in ncats
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 189
diff changeset
   816
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   817
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   818
See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to 
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   819
homotopy as the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   820
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   821
\begin{example}[Blob complexes of balls (with a fiber)]
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   822
\rm
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   823
\label{ex:blob-complexes-of-balls}
418
a96f3d2ef852 revisions of n-cat examples
Kevin Walker <kevin@canyon23.net>
parents: 417
diff changeset
   824
Fix an $n{-}k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   825
We will define an $A_\infty$ $k$-category $\cC$.
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   826
When $X$ is a $m$-ball, with $m<k$, define $\cC(X) = \cE(X\times F)$.
291
Scott Morrison <scott@tqft.net>
parents: 288
diff changeset
   827
When $X$ is an $k$-ball,
279
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   828
define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   829
where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
cb16992373be \mapsfrom
Scott Morrison <scott@tqft.net>
parents: 268
diff changeset
   830
\end{example}
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
   831
445
45807ce15615 starting on a_inf_blob.tex; just realized I forgot to fetch scott's recent changes
Kevin Walker <kevin@canyon23.net>
parents: 440
diff changeset
   832
This example will be used in Theorem \ref{thm:product} below, which allows us to compute the blob complex of a product.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   833
Notice that with $F$ a point, the above example is a construction turning a topological 
456
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
   834
$n$-category $\cC$ into an $A_\infty$ $n$-category.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   835
We think of this as providing a ``free resolution" 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   836
of the topological $n$-category. 
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   837
%\nn{say something about cofibrant replacements?}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   838
In fact, there is also a trivial, but mostly uninteresting, way to do this: 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   839
we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   840
and take $\CD{B}$ to act trivially. 
266
e2bab777d7c9 minor changes, fixes to some diagrams
Scott Morrison <scott@tqft.net>
parents: 265
diff changeset
   841
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   842
Beware that the ``free resolution" of the topological $n$-category $\pi_{\leq n}(T)$ 
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   843
is not the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   844
It's easy to see that with $n=0$, the corresponding system of fields is just 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   845
linear combinations of connected components of $T$, and the local relations are trivial.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   846
There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   847
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   848
\begin{example}[The bordism $n$-category, $A_\infty$ version]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   849
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   850
\label{ex:bordism-category-ainf}
348
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   851
As in Example \ref{ex:bord-cat}, for $X$ a $k$-ball, $k<n$, we define $\Bord^{n,\infty}(X)$
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   852
to be the set of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   853
submanifolds $W$ of $X\times \Real^\infty$ such that the projection $W \to X$ is transverse
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   854
to $\bd X$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   855
For an $n$-ball $X$ with boundary condition $c$ 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   856
define $\Bord^{n,\infty}(X; c)$ to be the space of all $k$-dimensional
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   857
submanifolds $W$ of $X\times \Real^\infty$ such that 
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   858
$W$ coincides with $c$ at $\bd X \times \Real^\infty$.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   859
(The topology on this space is induced by ambient isotopy rel boundary.
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   860
This is homotopy equivalent to a disjoint union of copies $\mathrm{B}\!\Homeo(W')$, where
b2fab3bf491b A-inf bordism cat example
Kevin Walker <kevin@canyon23.net>
parents: 347
diff changeset
   861
$W'$ runs though representatives of homeomorphism types of such manifolds.)
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   862
\end{example}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   863
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   864
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   865
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   866
Let $\cE\cB_n$ be the operad of smooth embeddings of $k$ (little)
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   867
copies of the standard $n$-ball $B^n$ into another (big) copy of $B^n$.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   868
(We require that the interiors of the little balls be disjoint, but their 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   869
boundaries are allowed to meet.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   870
Note in particular that the space for $k=1$ contains a copy of $\Diff(B^n)$, namely
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   871
the embeddings of a ``little" ball with image all of the big ball $B^n$.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   872
(But note also that this inclusion is not
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   873
necessarily a homotopy equivalence.)
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   874
The operad $\cE\cB_n$ is homotopy equivalent to the standard framed little $n$-ball operad:
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   875
by shrinking the little balls (precomposing them with dilations), 
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   876
we see that both operads are homotopic to the space of $k$ framed points
401
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   877
in $B^n$.
a8b8ebcf07ac Making notation in the product theorem more consistent.
Scott Morrison <scott@tqft.net>
parents: 400
diff changeset
   878
It is easy to see that $n$-fold loop spaces $\Omega^n(T)$  have
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   879
an action of $\cE\cB_n$.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   880
%\nn{add citation for this operad if we can find one}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   881
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   882
\begin{example}[$E_n$ algebras]
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   883
\rm
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   884
\label{ex:e-n-alg}
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   885
Let $A$ be an $\cE\cB_n$-algebra.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   886
Note that this implies a $\Diff(B^n)$ action on $A$, 
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   887
since $\cE\cB_n$ contains a copy of $\Diff(B^n)$.
309
386d2d12f95b start E_n example; other minor changes
Kevin Walker <kevin@canyon23.net>
parents: 303
diff changeset
   888
We will define an $A_\infty$ $n$-category $\cC^A$.
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   889
If $X$ is a ball of dimension $k<n$, define $\cC^A(X)$ to be a point.
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   890
In other words, the $k$-morphisms are trivial for $k<n$.
347
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   891
If $X$ is an $n$-ball, we define $\cC^A(X)$ via a colimit construction.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   892
(Plain colimit, not homotopy colimit.)
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   893
Let $J$ be the category whose objects are embeddings of a disjoint union of copies of 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   894
the standard ball $B^n$ into $X$, and who morphisms are given by engulfing some of the 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   895
embedded balls into a single larger embedded ball.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   896
To each object of $J$ we associate $A^{\times m}$ (where $m$ is the number of balls), and
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   897
to each morphism of $J$ we associate a morphism coming from the $\cE\cB_n$ action on $A$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   898
Alternatively and more simply, we could define $\cC^A(X)$ to be 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   899
$\Diff(B^n\to X)\times A$ modulo the diagonal action of $\Diff(B^n)$.
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   900
The remaining data for the $A_\infty$ $n$-category 
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   901
--- composition and $\Diff(X\to X')$ action ---
14643c4931bc finished E_n example (at SFO)
Kevin Walker <kevin@canyon23.net>
parents: 346
diff changeset
   902
also comes from the $\cE\cB_n$ action on $A$.
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   903
%\nn{should we spell this out?}
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
   904
356
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   905
Conversely, one can show that a topological $A_\infty$ $n$-category $\cC$, where the $k$-morphisms
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   906
$\cC(X)$ are trivial (single point) for $k<n$, gives rise to 
9bbe6eb6fb6c remark about EB_n-algebras from n-cats
Kevin Walker <kevin@canyon23.net>
parents: 352
diff changeset
   907
an $\cE\cB_n$-algebra.
528
96ec10a46ee1 minor; resolving a few \nns
Kevin Walker <kevin@canyon23.net>
parents: 522
diff changeset
   908
%\nn{The paper is already long; is it worth giving details here?}
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
   909
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
   910
If we apply the homotopy colimit construction of the next subsection to this example, 
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
   911
we get an instance of Lurie's topological chiral homology construction.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   912
\end{example}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
   913
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   914
310
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   915
\subsection{From balls to manifolds}
ee7be19ee61a converting sphere axiom to a proposition; still need to make similar changes in module axioms
Kevin Walker <kevin@canyon23.net>
parents: 309
diff changeset
   916
\label{ss:ncat_fields} \label{ss:ncat-coend}
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   917
In this section we show how to extend an $n$-category $\cC$ as described above 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   918
(of either the plain or $A_\infty$ variety) to an invariant of manifolds, which we denote by $\cl{\cC}$.
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   919
This extension is a certain colimit, and the arrow in the notation is intended as a reminder of this.
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   920
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   921
In the case of plain $n$-categories, this construction factors into a construction of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   922
system of fields and local relations, followed by the usual TQFT definition of a 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   923
vector space invariant of manifolds given as Definition \ref{defn:TQFT-invariant}.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   924
For an $A_\infty$ $n$-category, $\cl{\cC}$ is defined using a homotopy colimit instead.
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
   925
Recall that we can take a plain $n$-category $\cC$ and pass to the ``free resolution", 
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   926
an $A_\infty$ $n$-category $\bc_*(\cC)$, by computing the blob complex of balls 
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   927
(recall Example \ref{ex:blob-complexes-of-balls} above).
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   928
We will show in Corollary \ref{cor:new-old} below that the homotopy colimit invariant 
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   929
for a manifold $M$ associated to this $A_\infty$ $n$-category is actually the 
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   930
same as the original blob complex for $M$ with coefficients in $\cC$.
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   931
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   932
Recall that we've already anticipated this construction in the previous section, 
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   933
inductively defining $\cl{\cC}$ on $k$-spheres in terms of $\cC$ on $k$-balls, 
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   934
so that we can state the boundary axiom for $\cC$ on $k+1$-balls.
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   935
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
   936
\medskip
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   937
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   938
We will first define the ``decomposition" poset $\cell(W)$ for any $k$-manifold $W$, for $1 \leq k \leq n$. 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   939
An $n$-category $\cC$ provides a functor from this poset to the category of sets, 
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   940
and we  will define $\cl{\cC}(W)$ as a suitable colimit 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   941
(or homotopy colimit in the $A_\infty$ case) of this functor. 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   942
We'll later give a more explicit description of this colimit.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
   943
In the case that the $n$-category $\cC$ is enriched (e.g. associates vector spaces or chain complexes to $n$-balls with boundary data), 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   944
then the resulting colimit is also enriched, that is, the set associated to $W$ splits into subsets according to boundary data, and each of these subsets has the appropriate structure (e.g. a vector space or chain complex).
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   945
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   946
Recall (Definition \ref{defn:gluing-decomposition}) that a {\it ball decomposition} of $W$ is a 
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   947
sequence of gluings $M_0\to M_1\to\cdots\to M_m = W$ such that $M_0$ is a disjoint union of balls
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   948
$\du_a X_a$.
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   949
Abusing notation, we let $X_a$ denote both the ball (component of $M_0$) and
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   950
its image in $W$ (which is not necessarily a ball --- parts of $\bd X_a$ may have been glued together).
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   951
Define a {\it permissible decomposition} of $W$ to be a map
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   952
\[
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   953
	\coprod_a X_a \to W,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   954
\]
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   955
which can be completed to a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$.
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   956
Roughly, a permissible decomposition is like a ball decomposition where we don't care in which order the balls
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   957
are glued up to yield $W$, so long as there is some (non-pathological) way to glue them.
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   958
479
cfad13b6b1e5 some modifications to blobdef
Scott Morrison <scott@tqft.net>
parents: 476
diff changeset
   959
Given permissible decompositions $x = \{X_a\}$ and $y = \{Y_b\}$ of $W$, we say that $x$ is a refinement
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   960
of $y$, or write $x \le y$, if there is a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
   961
with $\du_b Y_b = M_i$ for some $i$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   962
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   963
\begin{defn}
479
cfad13b6b1e5 some modifications to blobdef
Scott Morrison <scott@tqft.net>
parents: 476
diff changeset
   964
The poset $\cell(W)$ has objects the permissible decompositions of $W$, 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
   965
and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   966
See Figure \ref{partofJfig} for an example.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   967
\end{defn}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   968
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   969
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   970
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
   971
\mathfig{.63}{ncat/zz2}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   972
\end{equation*}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   973
\caption{A small part of $\cell(W)$}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   974
\label{partofJfig}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   975
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   976
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   977
An $n$-category $\cC$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   978
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   979
(possibly with additional structure if $k=n$).
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   980
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   981
and, as described above, we have a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   982
are splittable along this decomposition.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
   983
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   984
\begin{defn}
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
   985
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
   986
For a decomposition $x = \bigsqcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   987
\begin{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   988
\label{eq:psi-C}
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
   989
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   990
\end{equation}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   991
where the restrictions to the various pieces of shared boundaries amongst the cells
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   992
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells).
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   993
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   994
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
   995
419
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   996
If $k=n$ in the above definition and we are enriching in some auxiliary category, 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   997
we need to say a bit more.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   998
We can rewrite Equation \ref{eq:psi-C} as
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
   999
\begin{equation} \label{eq:psi-CC}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1000
	\psi_{\cC;W}(x) \deq \coprod_\beta \prod_a \cC(X_a; \beta) ,
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1001
\end{equation}
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1002
where $\beta$ runs through labelings of the $k{-}1$-skeleton of the decomposition
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1003
(which are compatible when restricted to the $k{-}2$-skeleton), and $\cC(X_a; \beta)$
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1004
means the subset of $\cC(X_a)$ whose restriction to $\bd X_a$ agress with $\beta$.
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1005
If we are enriching over $\cS$ and $k=n$, then $\cC(X_a; \beta)$ is an object in 
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1006
$\cS$ and the coproduct and product in Equation \ref{eq:psi-CC} should be replaced by the approriate
a571e37cc68d a few more ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 418
diff changeset
  1007
operations in $\cS$ (e.g. direct sum and tensor product if $\cS$ is Vect).
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1008
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1009
Finally, we construct $\cl{\cC}(W)$ as the appropriate colimit of $\psi_{\cC;W}$:
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1010
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1011
\begin{defn}[System of fields functor]
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1012
\label{def:colim-fields}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1013
If $\cC$ is an $n$-category enriched in sets or vector spaces, $\cl{\cC}(W)$ is the usual colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1014
That is, for each decomposition $x$ there is a map
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1015
$\psi_{\cC;W}(x)\to \cl{\cC}(W)$, these maps are compatible with the refinement maps
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1016
above, and $\cl{\cC}(W)$ is universal with respect to these properties.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1017
\end{defn}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1018
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1019
\begin{defn}[System of fields functor, $A_\infty$ case]
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1020
When $\cC$ is an $A_\infty$ $n$-category, $\cl{\cC}(W)$ for $W$ a $k$-manifold with $k < n$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1021
is defined as above, as the colimit of $\psi_{\cC;W}$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1022
When $W$ is an $n$-manifold, the chain complex $\cl{\cC}(W)$ is the homotopy colimit of the functor $\psi_{\cC;W}$.
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1023
\end{defn}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1024
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1025
We can specify boundary data $c \in \cl{\cC}(\bdy W)$, and define functors $\psi_{\cC;W,c}$ 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1026
with values the subsets of those of $\psi_{\cC;W}$ which agree with $c$ on the boundary of $W$.
111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 110
diff changeset
  1027
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1028
We now give more concrete descriptions of the above colimits.
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1029
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1030
In the non-enriched case (e.g.\ $k<n$), where each $\cC(X_a; \beta)$ is just a set,
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1031
the colimit is
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1032
\[
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1033
	\cl{\cC}(W,c) = \left( \coprod_x \coprod_\beta \prod_a \cC(X_a; \beta) \right) \Bigg/ \sim ,
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1034
\]
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1035
where $x$ runs through decomposition of $W$, and $\sim$ is the obvious equivalence relation 
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1036
induced by refinement and gluing.
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1037
If $\cC$ is enriched over vector spaces and $W$ is an $n$-manifold, 
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1038
we can take
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1039
\begin{equation*}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1040
	\cl{\cC}(W,c) = \left( \bigoplus_x \bigoplus_\beta \bigotimes_a \cC(X_a; \beta) \right) \Bigg/ K,
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1041
\end{equation*}
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1042
where $K$ is the vector space spanned by elements $a - g(a)$, with
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1043
$a\in \psi_{\cC;W,c}(x)$ for some decomposition $x$, and $g: \psi_{\cC;W,c}(x)
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1044
\to \psi_{\cC;W,c}(y)$ is value of $\psi_{\cC;W,c}$ on some antirefinement $x \leq y$.
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1045
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1046
In the $A_\infty$ case, enriched over chain complexes, the concrete description of the homotopy colimit
197
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 196
diff changeset
  1047
is more involved.
542
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1048
We will describe two different (but homotopy equivalent) versions of the homotopy colimit of $\psi_{\cC;W}$.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1049
The first is the usual one, which works for any indexing category.
550
c9f41c18a96f deleting nn's
Scott Morrison <scott@tqft.net>
parents: 547
diff changeset
  1050
The second construction, which we call the {\it local} homotopy colimit,
542
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1051
is more closely related to the blob complex
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1052
construction of \S \ref{sec:blob-definition} and takes advantage of local (gluing) properties
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1053
of the indexing category $\cell(W)$.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1054
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1055
Define an $m$-sequence in $W$ to be a sequence $x_0 \le x_1 \le \dots \le x_m$ of permissible decompositions of $W$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1056
Such sequences (for all $m$) form a simplicial set in $\cell(W)$.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1057
Define $\cl{\cC}(W)$ as a vector space via
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1058
\[
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1059
	\cl{\cC}(W) = \bigoplus_{(x_i)} \psi_{\cC;W}(x_0)[m] ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1060
\]
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1061
where the sum is over all $m$ and all $m$-sequences $(x_i)$, and each summand is degree shifted by $m$. 
463
Kevin Walker <kevin@canyon23.net>
parents: 461
diff changeset
  1062
Elements of a summand indexed by an $m$-sequence will be call $m$-simplices.
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1063
We endow $\cl{\cC}(W)$ with a differential which is the sum of the differential of the $\psi_{\cC;W}(x_0)$
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1064
summands plus another term using the differential of the simplicial set of $m$-sequences.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1065
More specifically, if $(a, \bar{x})$ denotes an element in the $\bar{x}$
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1066
summand of $\cl{\cC}(W)$ (with $\bar{x} = (x_0,\dots,x_k)$), define
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1067
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1068
	\bd (a, \bar{x}) = (\bd a, \bar{x}) + (-1)^{\deg{a}} (g(a), d_0(\bar{x})) + (-1)^{\deg{a}} \sum_{j=1}^k (-1)^{j} (a, d_j(\bar{x})) ,
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1069
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1070
where $d_j(\bar{x}) = (x_0,\dots,x_{j-1},x_{j+1},\dots,x_k)$ and $g: \psi_\cC(x_0)\to \psi_\cC(x_1)$
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1071
is the usual gluing map coming from the antirefinement $x_0 \le x_1$.
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1072
%\nn{maybe mention that there is a version that emphasizes minimal gluings (antirefinements) which
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1073
%combine only two balls at a time; for $n=1$ this version will lead to usual definition
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1074
%of $A_\infty$ category}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1075
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1076
We can think of this construction as starting with a disjoint copy of a complex for each
461
c04bb911d636 changing simplex terminology for hocolimit (no more "degree")
Kevin Walker <kevin@canyon23.net>
parents: 456
diff changeset
  1077
permissible decomposition (the 0-simplices).
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1078
Then we glue these together with mapping cylinders coming from gluing maps
461
c04bb911d636 changing simplex terminology for hocolimit (no more "degree")
Kevin Walker <kevin@canyon23.net>
parents: 456
diff changeset
  1079
(the 1-simplices).
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1080
Then we kill the extra homology we just introduced with mapping 
461
c04bb911d636 changing simplex terminology for hocolimit (no more "degree")
Kevin Walker <kevin@canyon23.net>
parents: 456
diff changeset
  1081
cylinders between the mapping cylinders (the 2-simplices), and so on.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 112
diff changeset
  1082
542
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1083
Next we describe the local homotopy colimit.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1084
This is similar to the usual homotopy colimit, but using
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1085
a cone-product set (Remark \ref{blobsset-remark}) in place of a simplicial set.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1086
The cone-product $m$-polyhedra for the set are pairs $(x, E)$, where $x$ is a decomposition of $W$
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1087
and $E$ is an $m$-blob diagram such that each blob is a union of balls of $x$.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1088
(Recall that this means that the interiors of
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1089
each pair of blobs (i.e.\ balls) of $E$ are either disjoint or nested.)
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1090
To each $(x, E)$ we associate the chain complex $\psi_{\cC;W}(x)$, shifted in degree by $m$.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1091
The boundary has a term for omitting each blob of $E$.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1092
If we omit an innermost blob then we replace $x$ by the formal difference $x - \gl(x)$, where
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1093
$\gl(x)$ is obtained from $x$ by gluing together the balls of $x$ contained in the blob we are omitting.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1094
The gluing maps of $\cC$ give us a maps from $\psi_{\cC;W}(x)$ to $\psi_{\cC;W}(\gl(x))$.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1095
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1096
One can show that the usual hocolimit and the local hocolimit are homotopy equivalent using an 
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1097
Eilenberg-Zilber type subdivision argument.
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1098
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1099
\medskip
3baa4e4d395e preparing for new def of morphisms of a-ing 1-cat modules
Kevin Walker <kevin@canyon23.net>
parents: 531
diff changeset
  1100
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
  1101
$\cl{\cC}(W)$ is functorial with respect to homeomorphisms of $k$-manifolds. 
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
  1102
Restricting the $k$-spheres, we have now proved Lemma \ref{lem:spheres}.
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1103
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
  1104
It is easy to see that
422
d55b85632926 more ncat (colimits)
Kevin Walker <kevin@canyon23.net>
parents: 421
diff changeset
  1105
there are well-defined maps $\cl{\cC}(W)\to\cl{\cC}(\bd W)$, and that these maps
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1106
comprise a natural transformation of functors.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1107
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1108
\begin{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1109
\label{lem:colim-injective}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1110
Let $W$ be a manifold of dimension less than $n$.  Then for each
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1111
decomposition $x$ of $W$ the natural map $\psi_{\cC;W}(x)\to \cl{\cC}(W)$ is injective.
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1112
\end{lem}
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1113
\begin{proof}
531
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1114
$\cl{\cC}(W)$ is a colimit of a diagram of sets, and each of the arrows in the diagram is
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1115
injective.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1116
Concretely, the colimit is the disjoint union of the sets (one for each decomposition of $W$),
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1117
modulo the relation which identifies the domain of each of the injective maps
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1118
with it's image.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1119
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1120
To save ink and electrons we will simplify notation and write $\psi(x)$ for $\psi_{\cC;W}(x)$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1121
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1122
Suppose $a, \hat{a}\in \psi(x)$ have the same image in $\cl{\cC}(W)$ but $a\ne \hat{a}$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1123
Then there exist
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1124
\begin{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1125
\item decompositions $x = x_0, x_1, \ldots , x_{k-1}, x_k = x$ and $v_1,\ldots, v_k$ of $W$;
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1126
\item anti-refinements $v_i\to x_i$ and $v_i\to x_{i-1}$; and
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1127
\item elements $a_i\in \psi(x_i)$ and $b_i\in \psi(v_i)$, with $a_0 = a$ and $a_k = \hat{a}$, 
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1128
such that $b_i$ and $b_{i+1}$both map to (glue up to) $a_i$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1129
\end{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1130
In other words, we have a zig-zag of equivalences starting at $a$ and ending at $\hat{a}$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1131
The idea of the proof is to produce a similar zig-zag where everything antirefines to the same
535
07b79f81c956 numbering axioms and module axioms as 7.x
Scott Morrison <scott@tqft.net>
parents: 531
diff changeset
  1132
disjoint union of balls, and then invoke Axiom \ref{nca-assoc} which ensures associativity.
531
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1133
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1134
Let $z$ be a decomposition of $W$ which is in general position with respect to all of the 
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1135
$x_i$'s and $v_i$'s.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1136
There there decompositions $x'_i$ and $v'_i$ (for all $i$) such that
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1137
\begin{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1138
\item $x'_i$ antirefines to $x_i$ and $z$;
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1139
\item $v'_i$ antirefines to $x'_i$, $x'_{i-1}$ and $v_i$;
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1140
\item $b_i$ is the image of some $b'_i\in \psi(v'_i)$; and
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1141
\item $a_i$ is the image of some $a'_i\in \psi(x'_i)$, which in turn is the image
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1142
of $b'_i$ and $b'_{i+1}$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1143
\end{itemize}
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1144
Now consider the diagrams
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1145
\[ \xymatrix{
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1146
	& \psi(x'_{i-1}) \ar[rd] & \\
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1147
	\psi(v'_i) \ar[ru] \ar[rd] & & \psi(z) \\
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1148
	& \psi(x'_i) \ar[ru] &
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1149
} \]
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1150
The associativity axiom applied to this diagram implies that $a'_{i-1}$ and $a'_i$
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1151
map to the same element $c\in \psi(z)$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1152
Therefore $a'_0$ and $a'_k$ both map to $c$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1153
But $a'_0$ and $a'_k$ are both elements of $\psi(x'_0)$ (because $x'_k = x'_0$).
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1154
So by the injectivity clause of the composition axiom, we must have that $a'_0 = a'_k$.
da9bf150bf3d proof of injectivity/colimit lemma
Kevin Walker <kevin@canyon23.net>
parents: 530
diff changeset
  1155
But this implies that $a = a_0 = a_k = \hat{a}$, contrary to our assumption that $a\ne \hat{a}$.
415
8dedd2914d10 starting to revise ncat section
Kevin Walker <kevin@canyon23.net>
parents: 411
diff changeset
  1156
\end{proof}
402
853376c08d76 a bunch of minor changes
Scott Morrison <scott@tqft.net>
parents: 401
diff changeset
  1157
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
  1158
%\nn{need to finish explaining why we have a system of fields;
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
  1159
%define $k$-cat $\cC(\cdot\times W)$}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1160
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1161
\subsection{Modules}
95
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 94
diff changeset
  1162
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1163
Next we define plain and $A_\infty$ $n$-category modules.
199
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1164
The definition will be very similar to that of $n$-categories,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 198
diff changeset
  1165
but with $k$-balls replaced by {\it marked $k$-balls,} defined below.
198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 197
diff changeset
  1166
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1167
Our motivating example comes from an $(m{-}n{+}1)$-dimensional manifold $W$ with boundary
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1168
in the context of an $m{+}1$-dimensional TQFT.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1169
Such a $W$ gives rise to a module for the $n$-category associated to $\bd W$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1170
This will be explained in more detail as we present the axioms.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1171
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1172
Throughout, we fix an $n$-category $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1173
For all but one axiom, it doesn't matter whether $\cC$ is a topological $n$-category or an $A_\infty$ $n$-category.
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1174
We state the final axiom, regarding actions of homeomorphisms, differently in the two cases.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1175
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1176
Define a {\it marked $k$-ball} to be a pair $(B, N)$ homeomorphic to the pair
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1177
$$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1178
We call $B$ the ball and $N$ the marking.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1179
A homeomorphism between marked $k$-balls is a homeomorphism of balls which
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1180
restricts to a homeomorphism of markings.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1181
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1182
\begin{module-axiom}[Module morphisms] \label{module-axiom-funct}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1183
{For each $0 \le k \le n$, we have a functor $\cM_k$ from 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1184
the category of marked $k$-balls and 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1185
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1186
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1187
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1188
(As with $n$-categories, we will usually omit the subscript $k$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1189
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1190
For example, let $\cD$ be the TQFT which assigns to a $k$-manifold $N$ the set 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1191
of maps from $N$ to $T$ (for $k\le m$), modulo homotopy (and possibly linearized) if $k=m$.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1192
Let $W$ be an $(m{-}n{+}1)$-dimensional manifold with boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1193
Let $\cC$ be the $n$-category with $\cC(X) \deq \cD(X\times \bd W)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1194
Let $\cM(B, N) \deq \cD((B\times \bd W)\cup (N\times W))$
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1195
(see Example \ref{ex:maps-with-fiber}).
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1196
(The union is along $N\times \bd W$.)
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1197
%(If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1198
%the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1199
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1200
\begin{figure}[!ht]
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1201
$$\mathfig{.55}{ncat/boundary-collar}$$
182
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1202
\caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 179
diff changeset
  1203
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1204
Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1205
Call such a thing a {marked $k{-}1$-hemisphere}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1206
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1207
\begin{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1208
\label{lem:hemispheres}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1209
{For each $0 \le k \le n-1$, we have a functor $\cl\cM_k$ from 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1210
the category of marked $k$-hemispheres and 
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1211
homeomorphisms to the category of sets and bijections.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1212
\end{lem}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1213
The proof is exactly analogous to that of Lemma \ref{lem:spheres}, and we omit the details.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1214
We use the same type of colimit construction.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1215
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1216
In our example, $\cl\cM(H) = \cD(H\times\bd W \cup \bd H\times W)$.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1217
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1218
\begin{module-axiom}[Module boundaries (maps)]
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1219
{For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cl\cM(\bd M)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1220
These maps, for various $M$, comprise a natural transformation of functors.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1221
\end{module-axiom}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1222
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1223
Given $c\in\cl\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1224
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1225
If the $n$-category $\cC$ is enriched over some other category (e.g.\ vector spaces),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1226
then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1227
and $c\in \cC(\bd M)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1228
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1229
\begin{lem}[Boundary from domain and range]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1230
{Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k{-}1$-hemisphere ($1\le k\le n$),
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1231
$M_i$ is a marked $k{-}1$-ball, and $E = M_1\cap M_2$ is a marked $k{-}2$-hemisphere.
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1232
Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the 
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1233
two maps $\bd: \cM(M_i)\to \cl\cM(E)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1234
Then we have an injective map
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1235
\[
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1236
	\gl_E : \cM(M_1) \times_{\cl\cM(E)} \cM(M_2) \hookrightarrow \cl\cM(H)
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1237
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1238
which is natural with respect to the actions of homeomorphisms.}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1239
\end{lem}
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1240
Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1241
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1242
Let $\cl\cM(H)_E$ denote the image of $\gl_E$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1243
We will refer to elements of $\cl\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". 
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1244
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1245
\begin{lem}[Module to category restrictions]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1246
{For each marked $k$-hemisphere $H$ there is a restriction map
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1247
$\cl\cM(H)\to \cC(H)$.  
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1248
($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1249
These maps comprise a natural transformation of functors.}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1250
\end{lem}
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1251
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1252
Note that combining the various boundary and restriction maps above
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1253
(for both modules and $n$-categories)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1254
we have for each marked $k$-ball $(B, N)$ and each $k{-}1$-ball $Y\sub \bd B \setmin N$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1255
a natural map from a subset of $\cM(B, N)$ to $\cC(Y)$.
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1256
The subset is the subset of morphisms which are appropriately splittable (transverse to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1257
cutting submanifolds).
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1258
This fact will be used below.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1259
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1260
In our example, the various restriction and gluing maps above come from
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1261
restricting and gluing maps into $T$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1262
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1263
We require two sorts of composition (gluing) for modules, corresponding to two ways
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1264
of splitting a marked $k$-ball into two (marked or plain) $k$-balls.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1265
(See Figure \ref{zzz3}.)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1266
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1267
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1268
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1269
\mathfig{.4}{ncat/zz3}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1270
\end{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1271
\caption{Module composition (top); $n$-category action (bottom).}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1272
\label{zzz3}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1273
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1274
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1275
First, we can compose two module morphisms to get another module morphism.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1276
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1277
\begin{module-axiom}[Module composition]
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1278
{Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$)
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1279
and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1280
Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1281
Note that each of $M$, $M_1$ and $M_2$ has its boundary split into two marked $k{-}1$-balls by $E$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1282
We have restriction (domain or range) maps $\cM(M_i)_E \to \cM(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1283
Let $\cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1284
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1285
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1286
	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1287
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1288
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1289
to the intersection of the boundaries of $M$ and $M_i$.
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1290
If $k < n$,
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1291
or if $k=n$ and we are in the $A_\infty$ case, 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1292
we require that $\gl_Y$ is injective.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1293
(For $k=n$ in the plain (non-$A_\infty$) case, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1294
\end{module-axiom}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1295
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1296
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1297
Second, we can compose an $n$-category morphism with a module morphism to get another
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1298
module morphism.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1299
We'll call this the action map to distinguish it from the other kind of composition.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1300
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1301
\begin{module-axiom}[$n$-category action]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1302
{Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1303
$X$ is a plain $k$-ball,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1304
and $Y = X\cap M'$ is a $k{-}1$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1305
Let $E = \bd Y$, which is a $k{-}2$-sphere.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1306
We have restriction maps $\cM(M')_E \to \cC(Y)$ and $\cC(X)_E\to \cC(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1307
Let $\cC(X)_E \times_{\cC(Y)} \cM(M')_E$ denote the fibered product of these two maps. 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1308
Then (axiom) we have a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1309
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1310
	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1311
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1312
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1313
to the intersection of the boundaries of $X$ and $M'$.
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1314
If $k < n$,
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1315
or if $k=n$ and we are in the $A_\infty$ case, 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1316
we require that $\gl_Y$ is injective.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1317
(For $k=n$ in the plain (non-$A_\infty$) case, see below.)}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1318
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1319
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1320
\begin{module-axiom}[Strict associativity]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1321
The composition and action maps above are strictly associative.
475
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
  1322
Given any decomposition of a large marked ball into smaller marked and unmarked balls
07c18e2abd8f redefine "permissible decomp", and other changes to ntcat.tex; should be read
Kevin Walker <kevin@canyon23.net>
parents: 463
diff changeset
  1323
any sequence of pairwise gluings yields (via composition and action maps) the same result.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1324
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1325
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1326
Note that the above associativity axiom applies to mixtures of module composition,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1327
action maps and $n$-category composition.
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1328
See Figure \ref{zzz1b}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1329
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1330
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1331
\begin{equation*}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 218
diff changeset
  1332
\mathfig{0.49}{ncat/zz0} \mathfig{0.49}{ncat/zz1}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1333
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1334
\caption{Two examples of mixed associativity}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1335
\label{zzz1b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1336
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
  1337
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1338
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1339
The above three axioms are equivalent to the following axiom,
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1340
which we state in slightly vague form.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1341
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1342
\xxpar{Module multi-composition:}
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1343
{Given any splitting 
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1344
\[
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1345
	X_1 \sqcup\cdots\sqcup X_p \sqcup M_1\sqcup\cdots\sqcup M_q \to M
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1346
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1347
of a marked $k$-ball $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1348
into small (marked and plain) $k$-balls $M_i$ and $X_j$, there is a 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1349
map from an appropriate subset (like a fibered product) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1350
of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1351
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1352
	\cC(X_1)\times\cdots\times\cC(X_p) \times \cM(M_1)\times\cdots\times\cM(M_q) 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1353
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1354
to $\cM(M)$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1355
and these various multifold composition maps satisfy an
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1356
operad-type strict associativity condition.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1357
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1358
The above operad-like structure is analogous to the swiss cheese operad
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1359
\cite{MR1718089}.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1360
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1361
\medskip
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1362
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1363
We can define marked pinched products $\pi:E\to M$ of marked balls analogously to the 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1364
plain ball case.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1365
Note that a marked pinched product can be decomposed into either
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1366
two marked pinched products or a plain pinched product and a marked pinched product.
555
11532ce39ec0 making "no functors" excuses; other minor stuff
Kevin Walker <kevin@canyon23.net>
parents: 552
diff changeset
  1367
%\nn{should maybe give figure}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1368
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1369
\begin{module-axiom}[Product (identity) morphisms]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1370
For each pinched product $\pi:E\to M$, with $M$ a marked $k$-ball and $E$ a marked
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1371
$k{+}m$-ball ($m\ge 1$),
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1372
there is a map $\pi^*:\cM(M)\to \cM(E)$.
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1373
These maps must satisfy the following conditions.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1374
\begin{enumerate}
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1375
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1376
If $\pi:E\to M$ and $\pi':E'\to M'$ are marked pinched products, and
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1377
if $f:M\to M'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1378
\[ \xymatrix{
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1379
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1380
	M \ar[r]^{f} & M'
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1381
} \]
423
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1382
commutes, then we have 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1383
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1384
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1385
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1386
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1387
Product morphisms are compatible with module composition and module action.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1388
Let $\pi:E\to M$, $\pi_1:E_1\to M_1$, and $\pi_2:E_2\to M_2$ 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1389
be pinched products with $E = E_1\cup E_2$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1390
Let $a\in \cM(M)$, and let $a_i$ denote the restriction of $a$ to $M_i\sub M$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1391
Then 
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1392
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1393
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1394
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1395
Similarly, if $\rho:D\to X$ is a pinched product of plain balls and
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1396
$E = D\cup E_1$, then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1397
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1398
	\pi^*(a) = \rho^*(a')\bullet \pi_1^*(a_1),
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1399
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1400
where $a'$ is the restriction of $a$ to $D$.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1401
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1402
Product morphisms are associative.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1403
If $\pi:E\to M$ and $\rho:D\to E$ are marked pinched products then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1404
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1405
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1406
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1407
\item
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1408
Product morphisms are compatible with restriction.
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1409
If we have a commutative diagram
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1410
\[ \xymatrix{
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1411
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1412
	Y \ar@{^(->}[r] & M
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1413
} \]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1414
such that $\rho$ and $\pi$ are pinched products, then
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1415
\[
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1416
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1417
\]
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1418
($Y$ could be either a marked or plain ball.)
33b4bb53017a ncat: module def
Kevin Walker <kevin@canyon23.net>
parents: 422
diff changeset
  1419
\end{enumerate}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1420
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1421
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1422
As in the $n$-category definition, once we have product morphisms we can define
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1423
collar maps $\cM(M)\to \cM(M)$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1424
Note that there are two cases:
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1425
the collar could intersect the marking of the marked ball $M$, in which case
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1426
we use a product on a morphism of $\cM$; or the collar could be disjoint from the marking,
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1427
in which case we use a product on a morphism of $\cC$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1428
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1429
In our example, elements $a$ of $\cM(M)$ maps to $T$, and $\pi^*(a)$ is the pullback of
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1430
$a$ along a map associated to $\pi$.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1431
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1432
\medskip
110
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 109
diff changeset
  1433
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1434
There are two alternatives for the next axiom, according whether we are defining
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1435
modules for plain $n$-categories or $A_\infty$ $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1436
In the plain case we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1437
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1438
\begin{module-axiom}[\textup{\textbf{[plain version]}} Extended isotopy invariance in dimension $n$]
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1439
{Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1440
to the identity on $\bd M$ and is isotopic (rel boundary) to the identity.
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1441
Then $f$ acts trivially on $\cM(M)$.}
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1442
In addition, collar maps act trivially on $\cM(M)$.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1443
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1444
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1445
We emphasize that the $\bd M$ above means boundary in the marked $k$-ball sense.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1446
In other words, if $M = (B, N)$ then we require only that isotopies are fixed 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1447
on $\bd B \setmin N$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1448
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1449
For $A_\infty$ modules we require
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1450
551
9dfb5db2acd7 remaining changes from tuesday afternoon
Scott Morrison <scott@tqft.net>
parents: 550
diff changeset
  1451
%\addtocounter{module-axiom}{-1}
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1452
\begin{module-axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act]
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1453
For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1454
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1455
	C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1456
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1457
Here $C_*$ means singular chains and $\Homeo_\bd(M)$ is the space of homeomorphisms of $M$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1458
which fix $\bd M$.
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
  1459
These action maps are required to be associative up to homotopy, as in Theorem \ref{thm:CH-associativity}, 
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1460
and also compatible with composition (gluing) in the sense that
437
93ce0ba3d2d7 revisions to \S 1-5
Scott Morrison <scott@tqft.net>
parents: 426
diff changeset
  1461
a diagram like the one in Theorem \ref{thm:CH} commutes.
336
7a5a73ec8961 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms
Scott Morrison <scott@tqft.net>
parents: 335
diff changeset
  1462
\end{module-axiom}
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1463
424
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1464
As with the $n$-category version of the above axiom, we should also have families of collar maps act.
6ebf92d2ccef ncat.tex mostly module stuff
Kevin Walker <kevin@canyon23.net>
parents: 423
diff changeset
  1465
103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 102
diff changeset
  1466
\medskip
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1467
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1468
Note that the above axioms imply that an $n$-category module has the structure
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1469
of an $n{-}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1470
More specifically, let $J$ be a marked 1-ball, and define $\cE(X)\deq \cM(X\times J)$,
346
90e0c5e7ae07 EB_n operad example; other misc stuff
Kevin Walker <kevin@canyon23.net>
parents: 344
diff changeset
  1471
where $X$ is a $k$-ball and in the product $X\times J$ we pinch 
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1472
above the non-marked boundary component of $J$.
200
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1473
(More specifically, we collapse $X\times P$ to a single point, where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 199
diff changeset
  1474
$P$ is the non-marked boundary component of $J$.)
104
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 103
diff changeset
  1475
Then $\cE$ has the structure of an $n{-}1$-category.
102
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 101
diff changeset
  1476
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1477
All marked $k$-balls are homeomorphic, unless $k = 1$ and our manifolds
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1478
are oriented or Spin (but not unoriented or $\text{Pin}_\pm$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1479
In this case ($k=1$ and oriented or Spin), there are two types
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1480
of marked 1-balls, call them left-marked and right-marked,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1481
and hence there are two types of modules, call them right modules and left modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1482
In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1483
there is no left/right module distinction.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1484
130
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1485
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 128
diff changeset
  1486
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1487
We now give some examples of modules over topological and $A_\infty$ $n$-categories.
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1488
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1489
\begin{example}[Examples from TQFTs]
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1490
\rm
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1491
Continuing Example \ref{ex:ncats-from-tqfts}, with $\cF$ a TQFT, $W$ an $n{-}j$-manifold,
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1492
and $\cF(W)$ the $j$-category associated to $W$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1493
Let $Y$ be an $(n{-}j{+}1)$-manifold with $\bd Y = W$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1494
Define a $\cF(W)$ module $\cF(Y)$ as follows.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1495
If $M = (B, N)$ is a marked $k$-ball with $k<j$ let 
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1496
$\cF(Y)(M)\deq \cF((B\times W) \cup (N\times Y))$.
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1497
If $M = (B, N)$ is a marked $j$-ball and $c\in \cl{\cF(Y)}(\bd M)$ let
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1498
$\cF(Y)(M)\deq A_\cF((B\times W) \cup (N\times Y); c)$.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
  1499
\end{example}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1500
448
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1501
\begin{example}[Examples from the blob complex] \label{bc-module-example}
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1502
\rm
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1503
In the previous example, we can instead define
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1504
$\cF(Y)(M)\deq \bc_*((B\times W) \cup (N\times Y), c; \cF)$ (when $\dim(M) = n$)
448
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1505
and get a module for the $A_\infty$ $n$-category associated to $\cF$ as in 
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1506
Example \ref{ex:blob-complexes-of-balls}.
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1507
\end{example}
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1508
c3c8fb292934 done with a-inf section for now
Kevin Walker <kevin@canyon23.net>
parents: 447
diff changeset
  1509
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1510
\begin{example}
425
8f488e576afd ncat misc
Kevin Walker <kevin@canyon23.net>
parents: 424
diff changeset
  1511
\rm
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1512
Suppose $S$ is a topological space, with a subspace $T$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1513
We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1514
for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1515
$(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1516
such maps modulo homotopies fixed on $\bdy B \setminus N$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1517
This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}.
420
Scott Morrison <scott@tqft.net>
parents: 418
diff changeset
  1518
\end{example}
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1519
Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1520
\ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1521
Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
  1522
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1523
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1524
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1525
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1526
324
a20e2318cbb0 rewrite proof from gluing thm
Kevin Walker <kevin@canyon23.net>
parents: 319
diff changeset
  1527
\subsection{Modules as boundary labels (colimits for decorated manifolds)}
112
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 111
diff changeset
  1528
\label{moddecss}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1529
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1530
Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1531
Let $W$ be a $k$-manifold ($k\le n$),
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1532
let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1533
and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1534
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1535
We will define a set $\cC(W, \cN)$ using a colimit construction very similar to 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1536
the one appearing in \S \ref{ss:ncat_fields} above.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1537
(If $k = n$ and our $n$-categories are enriched, then
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1538
$\cC(W, \cN)$ will have additional structure; see below.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1539
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1540
Define a permissible decomposition of $W$ to be a map
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1541
\[
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1542
	\left(\bigsqcup_a X_a\right) \sqcup \left(\bigsqcup_{i,b} M_{ib}\right)  \to W,
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1543
\]
494
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1544
where each $X_a$ is a plain $k$-ball disjoint, in $W$, from $\cup Y_i$, and
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1545
each $M_{ib}$ is a marked $k$-ball intersecting $Y_i$  (once mapped into $W$),
cb76847c439e many small fixes in ncat.tex
Scott Morrison <scott@tqft.net>
parents: 479
diff changeset
  1546
with $M_{ib}\cap Y_i$ being the marking, which extends to a ball decomposition in the sense of Definition \ref{defn:gluing-decomposition}.
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1547
(See Figure \ref{mblabel}.)
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1548
\begin{figure}[t]
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1549
\begin{equation*}
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1550
\mathfig{.4}{ncat/mblabel}
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1551
\end{equation*}
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1552
\caption{A permissible decomposition of a manifold
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1553
whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1554
Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1555
\end{figure}
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1556
Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1557
of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1558
This defines a partial ordering $\cell(W)$, which we will think of as a category.
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1559
(The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1560
morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1561
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1562
The collection of modules $\cN$ determines 
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1563
a functor $\psi_\cN$ from $\cell(W)$ to the category of sets 
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1564
(possibly with additional structure if $k=n$).
329
eb03c4a92f98 various changes, mostly rewriting intros to sections for exposition
Scott Morrison <scott@tqft.net>
parents: 328
diff changeset
  1565
For a decomposition $x = (X_a, M_{ib})$ in $\cell(W)$, define $\psi_\cN(x)$ to be the subset
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1566
\[
191
8c2c330e87f2 working on ncats -- no new material, just improving text
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 190
diff changeset
  1567
	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1568
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1569
such that the restrictions to the various pieces of shared boundaries amongst the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1570
$X_a$ and $M_{ib}$ all agree.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1571
(That is, the fibered product over the boundary restriction maps.)
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1572
If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1573
via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1574
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1575
We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1576
(As in \S\ref{ss:ncat-coend}, if $k=n$ we take a colimit in whatever
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1577
category we are enriching over, and if additionally we are in the $A_\infty$ case, 
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1578
then we use a homotopy colimit.)
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1579
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1580
\medskip
108
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 107
diff changeset
  1581
143
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1582
If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 142
diff changeset
  1583
$\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1584
$D\times Y_i \sub \bd(D\times W)$.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1585
It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1586
has the structure of an $n{-}k$-category.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1587
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1588
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1589
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1590
We will use a simple special case of the above 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1591
construction to define tensor products 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1592
of modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1593
Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1594
(If $k=1$ and our manifolds are oriented, then one should be 
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1595
a left module and the other a right module.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1596
Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
286
ff867bfc8e9c mostly minor changes, reading modules section, stopping for dinner\!
Scott Morrison <scott@tqft.net>
parents: 279
diff changeset
  1597
Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
435
84834a1fdd50 ncat - minor
Kevin Walker <kevin@canyon23.net>
parents: 426
diff changeset
  1598
$n{-}1$-category associated as above to $J$ with its boundary labeled by $\cM_1$ and $\cM_2$.
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1599
This of course depends (functorially)
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1600
on the choice of 1-ball $J$.
105
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 104
diff changeset
  1601
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1602
We will define a more general self tensor product (categorified coend) below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1603
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1604
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1605
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1606
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1607
\subsection{Morphisms of modules}
288
6c1b3c954c7e more deligne.tex
Kevin Walker <kevin@canyon23.net>
parents: 286
diff changeset
  1608
\label{ss:module-morphisms}
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1609
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1610
Modules are collections of functors together with some additional data, so we define morphisms
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1611
of modules to be collections of natural transformations which are compatible with this
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1612
additional data.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1613
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1614
More specifically, let $\cX$ and $\cY$ be $\cC$ modules, i.e.\ collections of functors
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1615
$\{\cX_k\}$ and $\{\cY_k\}$, for $0\le k\le n$, from marked $k$-balls to sets 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1616
as in Module Axiom \ref{module-axiom-funct}.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1617
A morphism $g:\cX\to\cY$ is a collection of natural transformations $g_k:\cX_k\to\cY_k$
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1618
satisfying:
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1619
\begin{itemize}
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1620
\item Each $g_k$ commutes with $\bd$.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1621
\item Each $g_k$ commutes with gluing (module composition and $\cC$ action).
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1622
\item Each $g_k$ commutes with taking products.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1623
\item In the top dimension $k=n$, $g_n$ preserves whatever additional structure we are enriching over (e.g.\ vector
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1624
spaces).
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1625
In the $A_\infty$ case (e.g.\ enriching over chain complexes) $g_n$ should live in 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1626
an appropriate derived hom space, as described below.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1627
\end{itemize}
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1628
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1629
We will be mainly interested in the case $n=1$ and enriched over chain complexes,
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1630
since this is the case that's relevant to the generalized Deligne conjecture of \S\ref{sec:deligne}.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1631
So we treat this case in more detail.
366
b69b09d24049 tikzing left-marked-antirefinements
Scott Morrison <scott@tqft.net>
parents: 365
diff changeset
  1632
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1633
First we explain the remark about derived hom above.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1634
Let $L$ be a marked 1-ball and let $\cl{\cX}(L)$ denote the local homotopy colimit construction
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1635
associated to $L$ by $\cX$ and $\cC$.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1636
(See \S \ref{ss:ncat_fields} and \S \ref{moddecss}.)
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1637
Define $\cl{\cY}(L)$ similarly.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1638
For $K$ an unmarked 1-ball let $\cl{\cC(K)}$ denote the local homotopy colimit
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1639
construction associated to $K$ by $\cC$.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1640
Then we have an injective gluing map
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1641
\[
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1642
	\gl: \cl{\cX}(L) \ot \cl{\cC}(K) \to \cl{\cX}(L\cup K) 
261
1c408505c9f5 finished def of module morphisms; still need to define (yet another) 'evaluation' map
Kevin Walker <kevin@canyon23.net>
parents: 260
diff changeset
  1643
\]
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1644
which is also a chain map.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1645
(For simplicity we are suppressing mention of boundary conditions on the unmarked 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1646
boundary components of the 1-balls.)
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1647
We define $\hom_\cC(\cX \to \cY)$ to be a collection of (graded linear) natural transformations
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1648
$g: \cl{\cX}(L)\to \cl{\cY}(L)$ such that the following diagram commutes for all $L$ and $K$:
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1649
\[ \xymatrix{
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1650
	\cl{\cX}(L) \ot \cl{\cC}(K) \ar[r]^{\gl} \ar[d]_{g\ot \id} & \cl{\cX}(L\cup K) \ar[d]^{g}\\
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1651
	\cl{\cY}(L) \ot \cl{\cC}(K) \ar[r]^{\gl} & \cl{\cY}(L\cup K)
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1652
} \]
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1653
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1654
The usual differential on graded linear maps between chain complexes induces a differential
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1655
on $\hom_\cC(\cX \to \cY)$, giving it the structure of a chain complex.
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1656
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1657
Let $\cZ$ be another $\cC$ module.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1658
We define a chain map
262
3278eafef668 done for the moment with module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 261
diff changeset
  1659
\[
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1660
	a: \hom_\cC(\cX \to \cY) \ot (\cX \ot_\cC \cZ) \to \cY \ot_\cC \cZ
386
Kevin Walker <kevin@canyon23.net>
parents: 382
diff changeset
  1661
\]
546
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1662
as follows.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1663
Recall that the tensor product $\cX \ot_\cC \cZ$  depends on a choice of interval $J$, labeled
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1664
by $\cX$ on one boundary component and $\cZ$ on the other.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1665
Because we are using the {\it local} homotopy colimit, any generator
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1666
$D\ot x\ot \bar{c}\ot z$ of $\cX \ot_\cC \cZ$ can be written (perhaps non-uniquely) as a gluing
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1667
$(D'\ot x \ot \bar{c}') \bullet (D''\ot \bar{c}''\ot z)$, for some decomposition $J = L'\cup L''$
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1668
and with $D'\ot x \ot \bar{c}'$ a generator of $\cl{\cX}(L')$ and 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1669
$D''\ot \bar{c}''\ot z$ a generator of $\cl{\cZ}(L'')$.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1670
(Such a splitting exists because the blob diagram $D$ can be split into left and right halves, 
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1671
since no blob can include both the leftmost and rightmost intervals in the underlying decomposition.
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1672
This step would fail if we were using the usual hocolimit instead of the local hocolimit.)
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1673
We now define
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1674
\[
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1675
	a: g\ot (D\ot x\ot \bar{c}\ot z) \mapsto g(D'\ot x \ot \bar{c}')\bullet (D''\ot \bar{c}''\ot z) .
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1676
\]
689ef4edbdd7 new def of mophisms between modules
Kevin Walker <kevin@canyon23.net>
parents: 543
diff changeset
  1677
This does not depend on the choice of splitting $D = D'\bullet D''$ because $g$ commutes with gluing.
258
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1678
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1679
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1680
fd5d1647f4f3 starting write up module morphism def
Kevin Walker <kevin@canyon23.net>
parents: 236
diff changeset
  1681
512
050dba5e7bdd fixing some (but not all!?) of the hyperref warnings; start on revision of evmap
Kevin Walker <kevin@canyon23.net>
parents: 506
diff changeset
  1682
\subsection{The \texorpdfstring{$n{+}1$}{n+1}-category of sphere modules}
218
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 211
diff changeset
  1683
\label{ssec:spherecat}
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
  1684
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1685
In this subsection we define $n{+}1$-categories $\cS$ of ``sphere modules" 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1686
whose objects are $n$-categories.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1687
With future applications in mind, we treat simultaneously the big category
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1688
of all $n$-categories and all sphere modules and also subcategories thereof.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1689
When $n=1$ this is closely related to familiar $2$-categories consisting of 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1690
algebras, bimodules and intertwiners (or a subcategory of that).
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1691
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1692
While it is appropriate to call an $S^0$ module a bimodule,
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1693
this is much less true for higher dimensional spheres, 
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1694
so we prefer the term ``sphere module" for the general case.
144
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 143
diff changeset
  1695
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1696
%The results of this subsection are not needed for the rest of the paper,
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1697
%so we will skimp on details in a couple of places. We have included this mostly 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1698
%for the sake of comparing our notion of a topological $n$-category to other definitions.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1699
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1700
For simplicity, we will assume that $n$-categories are enriched over $\c$-vector spaces.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1701
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  1702
The $0$- through $n$-dimensional parts of $\cS$ are various sorts of modules, and we describe
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1703
these first.
259
db18f7c32abe more module morphism stuff
Kevin Walker <kevin@canyon23.net>
parents: 258
diff changeset
  1704
The $n{+}1$-dimensional part of $\cS$ consists of intertwiners
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1705
of  $1$-category modules associated to decorated $n$-balls.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1706
We will see below that in order for these $n{+}1$-morphisms to satisfy all of
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1707
the axioms of an $n{+}1$-category (in particular, duality requirements), we will have to assume
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1708
that our $n$-categories and modules have non-degenerate inner products.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1709
(In other words, we need to assume some extra duality on the $n$-categories and modules.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1710
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1711
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1712
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1713
Our first task is to define an $n$-category $m$-sphere module, for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1714
These will be defined in terms of certain classes of marked balls, very similarly
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1715
to the definition of $n$-category modules above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1716
(This, in turn, is very similar to our definition of $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1717
Because of this similarity, we only sketch the definitions below.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1718
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1719
We start with $0$-sphere modules, which also could reasonably be called (categorified) bimodules.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1720
(For $n=1$ they are precisely bimodules in the usual, uncategorified sense.)
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1721
We prefer the more awkward term ``0-sphere module" to emphasize the analogy
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1722
with the higher sphere modules defined below.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1723
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1724
Define a $0$-marked $k$-ball, $1\le k \le n$, to be a pair  $(X, M)$ homeomorphic to the standard
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1725
$(B^k, B^{k-1})$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1726
See Figure \ref{feb21a}.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1727
Another way to say this is that $(X, M)$ is homeomorphic to $B^{k-1}\times([-1,1], \{0\})$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1728
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1729
\begin{figure}[t]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1730
$$\tikz[baseline,line width=2pt]{\draw[blue] (-2,0)--(2,0); \fill[red] (0,0) circle (0.1);} \qquad \qquad \tikz[baseline,line width=2pt]{\draw[blue][fill=blue!30!white] (0,0) circle (2 and 1); \draw[red] (0,1)--(0,-1);}$$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1731
\caption{0-marked 1-ball and 0-marked 2-ball}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1732
\label{feb21a}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1733
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1734
340
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1735
The $0$-marked balls can be cut into smaller balls in various ways.
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1736
We only consider those decompositions in which the smaller balls are either
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1737
$0$-marked (i.e. intersect the $0$-marking of the large ball in a disc) 
f7da004e1f14 breaking long lines (probably a waste of time, but I couldn't resist)
Kevin Walker <kevin@canyon23.net>
parents: 339
diff changeset
  1738
or plain (don't intersect the $0$-marking of the large ball).
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1739
We can also take the boundary of a $0$-marked ball, which is $0$-marked sphere.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1740
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1741
Fix $n$-categories $\cA$ and $\cB$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1742
These will label the two halves of a $0$-marked $k$-ball.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1743
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1744
An $n$-category $0$-sphere module $\cM$ over the $n$-categories $\cA$ and $\cB$ is a collection of functors $\cM_k$ from the category
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1745
of $0$-marked $k$-balls, $1\le k \le n$,
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1746
(with the two halves labeled by $\cA$ and $\cB$) to the category of sets.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1747
If $k=n$ these sets should be enriched to the extent $\cA$ and $\cB$ are.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1748
Given a decomposition of a $0$-marked $k$-ball $X$ into smaller balls $X_i$, we have
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1749
morphism sets $\cA_k(X_i)$ (if $X_i$ lies on the $\cA$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1750
or $\cB_k(X_i)$ (if $X_i$ lies on the $\cB$-labeled side)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1751
or $\cM_k(X_i)$ (if $X_i$ intersects the marking and is therefore a smaller 0-marked ball).
417
d3b05641e7ca making quotation marks consistently "American style"
Kevin Walker <kevin@canyon23.net>
parents: 416
diff changeset
  1752
Corresponding to this decomposition we have a composition (or ``gluing") map
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1753
from the product (fibered over the boundary data) of these various sets into $\cM_k(X)$.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1754
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1755
\medskip
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1756
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1757
Part of the structure of an $n$-category 0-sphere module $\cM$  is captured by saying it is
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1758
a collection $\cD^{ab}$ of $n{-}1$-categories, indexed by pairs $(a, b)$ of objects (0-morphisms)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1759
of $\cA$ and $\cB$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1760
Let $J$ be some standard 0-marked 1-ball (i.e.\ an interval with a marked point in its interior).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1761
Given a $j$-ball $X$, $0\le j\le n-1$, we define
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1762
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1763
	\cD(X) \deq \cM(X\times J) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1764
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1765
The product is pinched over the boundary of $J$.
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1766
The set $\cD$ breaks into ``blocks" according to the restrictions to the pinched points of $X\times J$
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1767
(see Figure \ref{feb21b}).
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1768
These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$.
107
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 106
diff changeset
  1769
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1770
\begin{figure}[t] \centering
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1771
\begin{tikzpicture}[blue,line width=2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1772
\draw (0,1) -- (0,-1) node[below] {$X$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1773
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1774
\draw (2,0) -- (4,0) node[below] {$J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1775
\fill[red] (3,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1776
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1777
\draw[fill=blue!30!white] (6,0) node(a) {} arc (135:90:4) node(top) {} arc (90:45:4) node(b) {} arc (-45:-90:4) node(bottom) {} arc(-90:-135:4);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1778
\draw[red] (top.center) -- (bottom.center);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1779
\fill (a) circle (0.1) node[left] {\color{green!50!brown} $a$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1780
\fill (b) circle (0.1) node[right] {\color{green!50!brown} $b$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1781
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1782
\path (bottom) node[below]{$X \times J$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1783
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1784
\end{tikzpicture}
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1785
\caption{The pinched product $X\times J$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1786
\label{feb21b}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1787
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1788
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1789
More generally, consider an interval with interior marked points, and with the complements
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1790
of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1791
by $\cA_i$-$\cA_{i+1}$ 0-sphere modules $\cM_i$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1792
(See Figure \ref{feb21c}.)
426
8aca80203f9d search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
Kevin Walker <kevin@canyon23.net>
parents: 425
diff changeset
  1793
To this data we can apply the coend construction as in \S\ref{moddecss} above
327
Scott Morrison <scott@tqft.net>
parents: 319
diff changeset
  1794
to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1795
This amounts to a definition of taking tensor products of $0$-sphere modules over $n$-categories.
205
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 204
diff changeset
  1796
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1797
\begin{figure}[t] \centering
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1798
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1799
\draw[blue] (0,0) -- (6,0);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1800
\foreach \x/\n in {0.5/0,1.5/1,3/2,4.5/3,5.5/4} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1801
	\path (\x,0)  node[below] {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1802
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1803
\foreach \x/\n in {1/0,2/1,4/2,5/3} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1804
	\fill[red] (\x,0) circle (0.1) node[above] {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1805
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1806
\end{tikzpicture}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1807
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1808
\qquad
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1809
\begin{tikzpicture}[baseline,line width = 2pt]
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1810
\draw[blue] (0,0) circle (2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1811
\foreach \q/\n in {-45/0,90/1,180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1812
	\path (\q:2.4)  node {\color{green!50!brown}$\cA_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1813
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1814
\foreach \q/\n in {60/0,120/1,-120/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1815
	\fill[red] (\q:2) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1816
	\path (\q:2.4) node {\color{green!50!brown}$\cM_{\n}$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1817
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1818
\end{tikzpicture}
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1819
\caption{Marked and labeled 1-manifolds}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1820
\label{feb21c}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1821
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1822
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1823
We could also similarly mark and label a circle, obtaining an $n{-}1$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1824
associated to the marked and labeled circle.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1825
(See Figure \ref{feb21c}.)
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1826
If the circle is divided into two intervals, we can think of this $n{-}1$-category
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1827
as the 2-sided tensor product of the two 0-sphere modules associated to the two intervals.
206
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1828
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1829
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1830
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1831
Next we define $n$-category 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1832
These are just representations of (modules for) $n{-}1$-categories associated to marked and labeled 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1833
circles (1-spheres) which we just introduced.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1834
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1835
Equivalently, we can define 1-sphere modules in terms of 1-marked $k$-balls, $2\le k\le n$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 205
diff changeset
  1836
Fix a marked (and labeled) circle $S$.
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1837
Let $C(S)$ denote the cone of $S$, a marked 2-ball (Figure \ref{feb21d}).
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1838
%\nn{I need to make up my mind whether marked things are always labeled too.
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1839
%For the time being, let's say they are.}
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1840
A 1-marked $k$-ball is anything homeomorphic to $B^j \times C(S)$, $0\le j\le n-2$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1841
where $B^j$ is the standard $j$-ball.
399
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1842
A 1-marked $k$-ball can be decomposed in various ways into smaller balls, which are either 
Kevin Walker <kevin@canyon23.net>
parents: 398
diff changeset
  1843
(a) smaller 1-marked $k$-balls, (b) 0-marked $k$-balls, or (c) plain $k$-balls.
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1844
(See Figure \ref{subdividing1marked}.)
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1845
We now proceed as in the above module definitions.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1846
530
b236746e8e4d futzing with figures (\begin{center|equation} to \centering)
Kevin Walker <kevin@canyon23.net>
parents: 529
diff changeset
  1847
\begin{figure}[t] \centering
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1848
\begin{tikzpicture}[baseline,line width = 2pt]
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1849
\draw[blue][fill=blue!15!white] (0,0) circle (2);
367
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1850
\fill[red] (0,0) circle (0.1);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1851
\foreach \qm/\qa/\n in {70/-30/0, 120/95/1, -120/180/2} {
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1852
	\draw[red] (0,0) -- (\qm:2);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1853
	\path (\qa:1) node {\color{green!50!brown} $\cA_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1854
	\path (\qm+20:2.5) node(M\n) {\color{green!50!brown} $\cM_\n$};
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1855
	\draw[line width=1pt, green!50!brown, ->] (M\n.\qm+135) to[out=\qm+135,in=\qm+90] (\qm+5:1.3);
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1856
}
5ce95bd193ba tikzing feb21 diagrams
Scott Morrison <scott@tqft.net>
parents: 366
diff changeset
  1857
\end{tikzpicture}
557
5fdf1488ce20 resolving two more nns
Kevin Walker <kevin@canyon23.net>
parents: 555
diff changeset
  1858
\caption{Cone on a marked circle, the prototypical 1-marked ball}
209
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1859
\label{feb21d}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1860
\end{figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 208
diff changeset
  1861
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1862
\begin{figure}[t] \centering
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1863
\begin{tikzpicture}[baseline,line width = 2pt]
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1864
\draw[blue][fill=blue!15!white] (0,0) circle (2);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1865
\fill[red] (0,0) circle (0.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1866
\foreach \qm/\qa/\n in {70/-30/0, 120/95/1, -120/180/2} {
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1867
	\draw[red] (0,0) -- (\qm:2);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1868
%	\path (\qa:1) node {\color{green!50!brown} $\cA_\n$};
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1869
%	\path (\qm+20:2.5) node(M\n) {\color{green!50!brown} $\cM_\n$};
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1870
%	\draw[line width=1pt, green!50!brown, ->] (M\n.\qm+135) to[out=\qm+135,in=\qm+90] (\qm+5:1.3);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1871
}
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1872
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1873
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1874
\begin{scope}[black, thin]
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1875
\clip (0,0) circle (2);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1876
\draw (0:1) -- (90:1) -- (180:1) -- (270:1) -- cycle;
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1877
\draw (90:1) -- (90:2.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1878
\draw (180:1) -- (180:2.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1879
\draw (270:1) -- (270:2.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1880
\draw (0:1) -- (15:2.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1881
\draw (0:1) -- (315:1.5) -- (270:1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1882
\draw (315:1.5) -- (315:2.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1883
\end{scope}
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1884
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1885
\node(0marked) at (2.5,2.25) {$0$-marked ball};
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1886
\node(1marked) at (3.5,1) {$1$-marked ball};
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1887
\node(plain) at (3,-1) {plain ball};
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1888
\draw[line width=1pt, green!50!brown, ->] (0marked.270) to[out=270,in=45] (50:1.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1889
\draw[line width=1pt, green!50!brown, ->] (1marked.225) to[out=270,in=45] (0.4,0.1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1890
\draw[line width=1pt, green!50!brown, ->] (plain.90) to[out=135,in=45] (-45:1);
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1891
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1892
\end{tikzpicture}
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1893
\caption{Subdividing a $1$-marked ball into plain, $0$-marked and $1$-marked balls.}
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1894
\label{subdividing1marked}
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1895
\end{figure}
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  1896
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1897
A $n$-category 1-sphere module is, among other things, an $n{-}2$-category $\cD$ with
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1898
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1899
	\cD(X) \deq \cM(X\times C(S)) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1900
\]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1901
The product is pinched over the boundary of $C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1902
$\cD$ breaks into ``blocks" according to the restriction to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1903
image of $\bd C(S) = S$ in $X\times C(S)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1904
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1905
More generally, consider a 2-manifold $Y$ 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1906
(e.g.\ 2-ball or 2-sphere) marked by an embedded 1-complex $K$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1907
The components of $Y\setminus K$ are labeled by $n$-categories, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1908
the edges of $K$ are labeled by 0-sphere modules, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1909
and the 0-cells of $K$ are labeled by 1-sphere modules.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1910
We can now apply the coend construction and obtain an $n{-}2$-category.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1911
If $Y$ has boundary then this $n{-}2$-category is a module for the $n{-}1$-category
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1912
associated to the (marked, labeled) boundary of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1913
In particular, if $\bd Y$ is a 1-sphere then we get a 1-sphere module as defined above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1914
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1915
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1916
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1917
It should now be clear how to define $n$-category $m$-sphere modules for $0\le m \le n-1$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1918
For example, there is an $n{-}2$-category associated to a marked, labeled 2-sphere,
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1919
and a 2-sphere module is a representation of such an $n{-}2$-category.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1920
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1921
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1922
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1923
We can now define the $n$-or-less-dimensional part of our $n{+}1$-category $\cS$.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1924
Choose some collection of $n$-categories, then choose some collections of 0-sphere modules between
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1925
these $n$-categories, then choose some collection of 1-sphere modules for the various
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1926
possible marked 1-spheres labeled by the $n$-categories and 0-sphere modules, and so on.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1927
Let $L_i$ denote the collection of $i{-}1$-sphere modules we have chosen.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1928
(For convenience, we declare a $(-1)$-sphere module to be an $n$-category.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1929
There is a wide range of possibilities.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1930
The set $L_0$ could contain infinitely many $n$-categories or just one.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1931
For each pair of $n$-categories in $L_0$, $L_1$ could contain no 0-sphere modules at all or 
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  1932
it could contain several.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1933
The only requirement is that each $k$-sphere module be a module for a $k$-sphere $n{-}k$-category
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1934
constructed out of labels taken from $L_j$ for $j<k$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1935
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1936
We now define $\cS(X)$, for $X$ a ball of dimension at most $n$, to be the set of all 
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1937
cell-complexes $K$ embedded in $X$, with the codimension-$j$ parts of $(X, K)$ labeled
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1938
by elements of $L_j$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1939
As described above, we can think of each decorated $k$-ball as defining a $k{-}1$-sphere module
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1940
for the $n{-}k{+}1$-category associated to its decorated boundary.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1941
Thus the $k$-morphisms of $\cS$ (for $k\le n$) can be thought 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1942
of as $n$-category $k{-}1$-sphere modules 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1943
(generalizations of bimodules).
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1944
On the other hand, we can equally well think of the $k$-morphisms as decorations on $k$-balls, 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1945
and from this point of view it is clear that they satisfy all of the axioms of an
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1946
$n{+}1$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1947
(All of the axioms for the less-than-$n{+}1$-dimensional part of an $n{+}1$-category, that is.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1948
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1949
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1950
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1951
Next we define the $n{+}1$-morphisms of $\cS$.
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1952
The construction of the 0- through $n$-morphisms was easy and tautological, but the 
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1953
$n{+}1$-morphisms will require some effort and combinatorial topology, as well as additional
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  1954
duality assumptions on the lower morphisms. These are required because we define the spaces of $n{+}1$-morphisms by making arbitrary choices of incoming and outgoing boundaries for each $n$-ball. The additional duality assumptions are needed to prove independence of our definition form these choices.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1955
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1956
Let $X$ be an $n{+}1$-ball, and let $c$ be a decoration of its boundary
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1957
by a cell complex labeled by 0- through $n$-morphisms, as above.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1958
Choose an $n{-}1$-sphere $E\sub \bd X$ which divides
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1959
$\bd X$ into ``incoming" and ``outgoing" boundary $\bd_-X$ and $\bd_+X$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1960
Let $E_c$ denote $E$ decorated by the restriction of $c$ to $E$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1961
Recall from above the associated 1-category $\cS(E_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1962
We can also have $\cS(E_c)$ modules $\cS(\bd_-X_c)$ and $\cS(\bd_+X_c)$.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1963
Define
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1964
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1965
	\cS(X; c; E) \deq \hom_{\cS(E_c)}(\cS(\bd_-X_c), \cS(\bd_+X_c)) .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1966
\]
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1967
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1968
We will show that if the sphere modules are equipped with a ``compatible family of 
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1969
non-degenerate inner products", then there is a coherent family of isomorphisms
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1970
$\cS(X; c; E) \cong \cS(X; c; E')$ for all pairs of choices $E$ and $E'$.
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  1971
This will allow us to define $\cS(X; c)$ independently of the choice of $E$.
208
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 207
diff changeset
  1972
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1973
First we must define ``inner product", ``non-degenerate" and ``compatible".
387
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1974
Let $Y$ be a decorated $n$-ball, and $\ol{Y}$ it's mirror image.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1975
(We assume we are working in the unoriented category.)
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1976
Let $Y\cup\ol{Y}$ denote the decorated $n$-sphere obtained by gluing $Y$ and $\ol{Y}$
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1977
along their common boundary.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1978
An {\it inner product} on $\cS(Y)$ is a dual vector
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1979
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1980
	z_Y : \cS(Y\cup\ol{Y}) \to \c.
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1981
\]
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1982
We will also use the notation
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1983
\[
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1984
	\langle a, b\rangle \deq z_Y(a\bullet \ol{b}) \in \c .
f0518720227a sphere modules (in progress)
Kevin Walker <kevin@canyon23.net>
parents: 386
diff changeset
  1985
\]
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1986
An inner product induces a linear map
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1987
\begin{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1988
	\varphi: \cS(Y) &\to& \cS(Y)^* \\
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1989
	a &\mapsto& \langle a, \cdot \rangle
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1990
\end{eqnarray*}
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1991
which satisfies, for all morphisms $e$ of $\cS(\bd Y)$,
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1992
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1993
	\varphi(ae)(b) = \langle ae, b \rangle = z_Y(a\bullet e\bullet b) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1994
			\langle a, eb \rangle = \varphi(a)(eb) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1995
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1996
In other words, $\varphi$ is a map of $\cS(\bd Y)$ modules.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1997
An inner product is {\it non-degenerate} if $\varphi$ is an isomorphism.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1998
This implies that $\cS(Y; c)$ is finite dimensional for all boundary conditions $c$.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  1999
(One can think of these inner products as giving some duality in dimension $n{+}1$;
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2000
heretofore we have only assumed duality in dimensions 0 through $n$.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2001
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2002
Next we define compatibility.
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2003
Let $Y = Y_1\cup Y_2$ with $D = Y_1\cap Y_2$.
398
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2004
Let $X_1$ and $X_2$ be the two components of $Y\times I$ cut along
2a9c637182f0 edits to sphere-modules stuff: some todos added
Scott Morrison <scott@tqft.net>
parents: 393
diff changeset
  2005
$D\times I$, in both cases using the pinched product.
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2006
(Here we are overloading notation and letting $D$ denote both a decorated and an undecorated
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2007
manifold.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2008
We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2009
(see Figure \ref{jun23a}).
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2010
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2011
\begin{equation*}
497
18b742b1b308 YxI sliced open diagram
Scott Morrison <scott@tqft.net>
parents: 494
diff changeset
  2012
\mathfig{.6}{ncat/YxI-sliced}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2013
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2014
\caption{$Y\times I$ sliced open}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2015
\label{jun23a}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2016
\end{figure}
390
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2017
Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2018
which agree on their boundaries, we can evaluate
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2019
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2020
	z_{Y_i}(a_i\bullet b_i\bullet v) \in \c .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2021
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2022
(This requires a choice of homeomorphism $Y_i \cup \ol{Y}_i \cup (D\times I) \cong
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2023
Y_i \cup \ol{Y}_i$, but the value of $z_{Y_i}$ is independent of this choice.)
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2024
We can think of $z_{Y_i}$ as giving a function
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2025
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2026
	\psi_i : \cS(Y_i) \ot \cS(\ol{Y}_i) \to \cS(D\times I)^* 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2027
					\stackrel{\varphi\inv}{\longrightarrow} \cS(D\times I) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2028
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2029
We can now finally define a family of inner products to be {\it compatible} if
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2030
for all decompositions $Y = Y_1\cup Y_2$ as above and all $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2031
we have
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2032
\[
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2033
	z_Y(a_1\bullet a_2\bullet b_1\bullet b_2) = 
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2034
				z_{D\times I}(\psi_1(a_1\ot b_1)\bullet \psi_2(a_2\ot b_2)) .
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2035
\]
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2036
In other words, the inner product on $Y$ is determined by the inner products on
027bfdae3098 define compatible familty of non-degenerate IPs
Kevin Walker <kevin@canyon23.net>
parents: 387
diff changeset
  2037
$Y_1$, $Y_2$ and $D\times I$.
207
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 206
diff changeset
  2038
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2039
Now we show how to unambiguously identify $\cS(X; c; E)$ and $\cS(X; c; E')$ for any
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2040
two choices of $E$ and $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2041
Consider first the case where $\bd X$ is decomposed as three $n$-balls $A$, $B$ and $C$,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2042
with $E = \bd(A\cup B)$ and $E' = \bd A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2043
We must provide an isomorphism between $\cS(X; c; E) = \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2044
and $\cS(X; c; E') = \hom(\cS(C\cup \ol{B}), \cS(A))$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2045
Let $D = B\cap A$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2046
Then as above we can construct a map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2047
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2048
	\psi: \cS(B)\ot\cS(\ol{B}) \to \cS(D\times I) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2049
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2050
Given $f\in \hom(\cS(C), \cS(A\cup B))$ we define $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2051
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2052
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2053
	\cS(C\cup \ol{B}) \stackrel{f\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2054
		\cS(A\cup B\cup \ol{B})  \stackrel{\id\ot\psi}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2055
			\cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2056
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2057
(See Figure \ref{jun23b}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2058
\begin{figure}[t]
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2059
$$
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2060
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2061
\draw (0,0) node(R) {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2062
	-- (0.75,0) node[below] {$\bar{B}$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2063
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2064
	arc (0:80:1.5) node[above] {$D \times I$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2065
	arc (80:180:1.5);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2066
\foreach \r in {0.3, 0.6, 0.9, 1.2} {
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2067
	\draw[blue!50, line width = 0.5pt] (\r,0) arc (0:180:\r);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2068
}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2069
\draw[fill=white]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2070
	(R) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2071
	arc (45:65:3) node[below] {$B$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2072
	arc (65:90:3) node[below] {$A$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2073
	arc (90:135:3) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2074
	arc (-135:-90:3) node[below] {$C$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2075
	arc (-90:-45:3);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2076
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {$D$};
547
fbad527790c1 minor: futzing with font size in 2 figs
Kevin Walker <kevin@canyon23.net>
parents: 546
diff changeset
  2077
\node[green!50!brown] at (-2,0) {\scalebox{1.4}{$\uparrow f$}};
fbad527790c1 minor: futzing with font size in 2 figs
Kevin Walker <kevin@canyon23.net>
parents: 546
diff changeset
  2078
\node[green!50!brown] at (0.2,0.8) {\scalebox{1.4}{$\uparrow \psi$}};
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2079
\end{tikzpicture}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2080
$$
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2081
\caption{Moving $B$ from top to bottom}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2082
\label{jun23b}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2083
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2084
Let $D' = B\cap C$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2085
Using the inner products there is an adjoint map
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2086
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2087
	\psi^\dagger: \cS(D'\times I) \to \cS(\ol{B})\ot\cS(B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2088
\]
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2089
Given $f'\in \hom(\cS(C\cup \ol{B}), \cS(A))$ we define $f\in \hom(\cS(C), \cS(A\cup B))$
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2090
to be the composition
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2091
\[
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2092
	\cS(C) \stackrel{\cong}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2093
		\cS(C\cup(D'\times I)) \stackrel{\id\ot\psi^\dagger}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2094
			\cS(C\cup \ol{B}\cup B)   \stackrel{f'\ot\id}{\longrightarrow}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2095
				\cS(A\cup B) .
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2096
\]
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2097
(See Figure \ref{jun23c}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2098
\begin{figure}[t]
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2099
\begin{equation*}
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2100
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=-1.5cm]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2101
\draw (0,0) node(R) {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2102
	-- (0.75,0) node[above] {$B$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2103
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2104
	arc (0:80:1.5) node[below] {$D' \times I$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2105
	arc (80:180:1.5);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2106
\foreach \r in {0.3, 0.6, 0.9, 1.2} {
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2107
	\draw[blue!50, line width = 0.5pt] (\r,0) arc (0:180:\r);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2108
}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2109
\draw[fill=white]
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2110
	(R) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2111
	arc (45:65:3) node[above] {$\bar{B}$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2112
	arc (65:90:3) node[below] {$C$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2113
	arc (90:135:3) node[circle,fill=black,inner sep=2pt] {}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2114
	arc (-135:-90:3) node[below] {$A$}
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2115
	arc (-90:-45:3);
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2116
\draw[fill]  (150:1.5) circle (2pt) node[below=4pt] {$D'$};
547
fbad527790c1 minor: futzing with font size in 2 figs
Kevin Walker <kevin@canyon23.net>
parents: 546
diff changeset
  2117
\node[green!50!brown] at (-2,0) {\scalebox{1.4}{$f'\uparrow $}};
fbad527790c1 minor: futzing with font size in 2 figs
Kevin Walker <kevin@canyon23.net>
parents: 546
diff changeset
  2118
\node[green!50!brown] at (0.2,0.8) {\scalebox{1.4}{$\psi^\dagger \uparrow $}};
443
5a560cfd9893 tikzing two diagrams
Scott Morrison <scott@tqft.net>
parents: 440
diff changeset
  2119
\end{tikzpicture}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2120
\end{equation*}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2121
\caption{Moving $B$ from bottom to top}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2122
\label{jun23c}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2123
\end{figure}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2124
Let $D' = B\cap C$.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2125
It is not hard too show that the above two maps are mutually inverse.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2126
559
62a402dd3e6e assoc of n+1
Kevin Walker <kevin@canyon23.net>
parents: 557
diff changeset
  2127
\begin{lem} \label{equator-lemma}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2128
Any two choices of $E$ and $E'$ are related by a series of modifications as above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2129
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2130
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2131
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2132
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2133
$E$ and $E'$ are isotopic, and any isotopy is 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2134
homotopic to a composition of small isotopies which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2135
(a) supported away from $E$, or (b) modify $E$ in the simple manner described above.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2136
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2137
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2138
It follows from the lemma that we can construct an isomorphism
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2139
between $\cS(X; c; E)$ and $\cS(X; c; E')$ for any pair $E$, $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2140
This construction involves on a choice of simple ``moves" (as above) to transform
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2141
$E$ to $E'$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2142
We must now show that the isomorphism does not depend on this choice.
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2143
We will show below that it suffice to check two ``movie moves".
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2144
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2145
The first movie move is to push $E$ across an $n$-ball $B$ as above, then push it back.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2146
The result is equivalent to doing nothing.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2147
As we remarked above, the isomorphisms corresponding to these two pushes are mutually
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2148
inverse, so we have invariance under this movie move.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2149
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2150
The second movie move replaces two successive pushes in the same direction,
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2151
across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$.
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2152
(See Figure \ref{jun23d}.)
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2153
\begin{figure}[t]
456
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2154
\begin{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2155
\node(L) {
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2156
\scalebox{0.5}{
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2157
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2158
\draw[red] (0.75,0) -- +(2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2159
\draw[red] (0,0) node(R) {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2160
	-- (0.75,0) node[below] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2161
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2162
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2163
\draw (1.5,0) arc (0:149:1.5);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2164
\draw[red]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2165
	(R) node[circle,fill=black,inner sep=2pt] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2166
	arc (-45:-135:3) node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2167
\draw[red] (-5.5,0) -- (-4.2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2168
\draw (R) arc (45:75:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2169
\draw (150:1.5) arc (74:135:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2170
\node at (-2,0) {\scalebox{2.0}{$B_1$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2171
\node at (0.2,0.8) {\scalebox{2.0}{$B_2$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2172
\node at (-4,1.2) {\scalebox{2.0}{$A$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2173
\node at (-4,-1.2) {\scalebox{2.0}{$C$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2174
\node[red] at (2.53,0.35) {\scalebox{2.0}{$E$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2175
\end{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2176
}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2177
};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2178
\node(M) at (5,4) {
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2179
\scalebox{0.5}{
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2180
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2181
\draw[red] (0.75,0) -- +(2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2182
\draw[red] (0,0) node(R) {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2183
	-- (0.75,0) node[below] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2184
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2185
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2186
\draw(1.5,0) arc (0:149:1.5);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2187
\draw
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2188
	(R) node[circle,fill=black,inner sep=2pt] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2189
	arc (-45:-135:3) node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2190
\draw[red] (-5.5,0) -- (-4.2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2191
\draw[red] (R) arc (45:75:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2192
\draw[red] (150:1.5) arc (74:135:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2193
\node at (-2,0) {\scalebox{2.0}{$B_1$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2194
\node at (0.2,0.8) {\scalebox{2.0}{$B_2$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2195
\node at (-4,1.2) {\scalebox{2.0}{$A$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2196
\node at (-4,-1.2) {\scalebox{2.0}{$C$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2197
\node[red] at (2.53,0.35) {\scalebox{2.0}{$E$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2198
\end{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2199
}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2200
};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2201
\node(R) at (10,0) {
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2202
\scalebox{0.5}{
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2203
\begin{tikzpicture}[baseline,line width = 1pt,x=1.5cm,y=1.5cm]
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2204
\draw[red] (0.75,0) -- +(2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2205
\draw (0,0) node(R) {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2206
	-- (0.75,0) node[below] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2207
	--(1.5,0)  node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2208
\draw[fill]  (150:1.5) circle (2pt) node[above=4pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2209
\draw[red] (1.5,0) arc (0:149:1.5);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2210
\draw
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2211
	(R) node[circle,fill=black,inner sep=2pt] {}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2212
	arc (-45:-135:3) node[circle,fill=black,inner sep=2pt] {};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2213
\draw[red] (-5.5,0) -- (-4.2,0);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2214
\draw (R) arc (45:75:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2215
\draw[red] (150:1.5) arc (74:135:3);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2216
\node at (-2,0) {\scalebox{2.0}{$B_1$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2217
\node at (0.2,0.8) {\scalebox{2.0}{$B_2$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2218
\node at (-4,1.2) {\scalebox{2.0}{$A$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2219
\node at (-4,-1.2) {\scalebox{2.0}{$C$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2220
\node[red] at (2.53,0.35) {\scalebox{2.0}{$E$}};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2221
\end{tikzpicture}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2222
}
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2223
};
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2224
\draw[->] (L) to[out=90,in=225] node[sloped, above] {push $B_1$} (M);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2225
\draw[->] (M)  to[out=-45,in=90] node[sloped, above] {push $B_2$} (R);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2226
\draw[->] (L) to[out=-35,in=-145] node[sloped, below] {push $B_1 \cup B_2$} (R);
a5d75e0f9229 filtration -> simplex, and another diagram
Scott Morrison <scott@tqft.net>
parents: 448
diff changeset
  2227
\end{tikzpicture}
393
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2228
\caption{A movie move}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2229
\label{jun23d}
0daa4983d229 figures for n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 392
diff changeset
  2230
\end{figure}
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2231
Invariance under this movie move follows from the compatibility of the inner
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2232
product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2233
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2234
%The third movie move could be called ``locality" or ``disjoint commutativity".
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2235
%\nn{...}
439
10f0f68cafb4 mostly (entirely?) ncat revisions
Kevin Walker <kevin@canyon23.net>
parents: 435
diff changeset
  2236
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2237
If $n\ge 2$, these two movie move suffice:
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2238
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2239
\begin{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2240
Assume $n\ge 2$ and fix $E$ and $E'$ as above.
550
c9f41c18a96f deleting nn's
Scott Morrison <scott@tqft.net>
parents: 547
diff changeset
  2241
Then any two sequences of elementary moves connecting $E$ to $E'$
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2242
are related by a sequence of the two movie moves defined above.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2243
\end{lem}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2244
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2245
\begin{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2246
(Sketch)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2247
Consider a two parameter family of diffeomorphisms (one parameter family of isotopies) 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2248
of $\bd X$.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2249
Up to homotopy,
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2250
such a family is homotopic to a family which can be decomposed 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2251
into small families which are either
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2252
(a) supported away from $E$, 
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2253
(b) have boundaries corresponding to the two movie moves above.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2254
Finally, observe that the space of $E$'s is simply connected.
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2255
(This fails for $n=1$.)
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2256
\end{proof}
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2257
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2258
For $n=1$ we have to check an additional ``global" relations corresponding to 
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2259
rotating the 0-sphere $E$ around the 1-sphere $\bd X$.
529
Kevin Walker <kevin@canyon23.net>
parents: 528
diff changeset
  2260
But if $n=1$, then we are in the case of ordinary algebroids and bimodules,
560
b138ee4a5938 friday afternoon
Scott Morrison <scott@tqft.net>
parents: 559
diff changeset
  2261
and this is just the well-known ``Frobenius reciprocity" result for bimodules \cite{MR1424954}.
392
a7b53f6a339d finished def of sphere module n+1-cat
Kevin Walker <kevin@canyon23.net>
parents: 390
diff changeset
  2262
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2263
\medskip
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2264
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2265
We have now defined $\cS(X; c)$ for any $n{+}1$-ball $X$ with boundary decoration $c$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2266
We must also define, for any homeomorphism $X\to X'$, an action $f: \cS(X; c) \to \cS(X', f(c))$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2267
Choosing an equator $E\sub \bd X$ we have 
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2268
\[
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2269
	\cS(X; c) \cong \cS(X; c; E) \deq \hom_{\cS(E_c)}(\cS(\bd_-X_c), \cS(\bd_+X_c)) .
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2270
\]
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2271
We define $f: \cS(X; c) \to \cS(X', f(c))$ to be the tautological map
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2272
\[
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2273
	f: \cS(X; c; E) \to \cS(X'; f(c); f(E)) .
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2274
\]
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2275
It is easy to show that this is independent of the choice of $E$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2276
Note also that this map depends only on the restriction of $f$ to $\bd X$.
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2277
In particular, if $F: X\to X$ is the identity on $\bd X$ then $f$ acts trivially, as required by
552
Kevin Walker <kevin@canyon23.net>
parents: 551
diff changeset
  2278
Axiom \ref{axiom:extended-isotopies}.
505
8ed3aeb78778 sphere module n+1 mor stuff
Kevin Walker <kevin@canyon23.net>
parents: 497
diff changeset
  2279
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2280
We define product $n{+}1$-morphisms to be identity maps of modules.
101
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 99
diff changeset
  2281
506
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2282
To define (binary) composition of $n{+}1$-morphisms, choose the obvious common equator
Kevin Walker <kevin@canyon23.net>
parents: 505
diff changeset
  2283
then compose the module maps.
559
62a402dd3e6e assoc of n+1
Kevin Walker <kevin@canyon23.net>
parents: 557
diff changeset
  2284
The proof that this composition rule is associative is similar to the proof of Lemma \ref{equator-lemma}.